Life Table Based ETs and Time Series for Sustainable Management of Spilosoma obliqua Walkar on Jute

Life Table Based ETs and Time Series for Sustainable Management of Spilosoma obliqua Walkar on Jute



Population ecology, Spilosoma obliqua, Chorchorus olitorious, C. capsularis, phytoconstituents, ETs, CSs, CSPM


Stage-specific two-sex pooled life table, nutritional ecology and economic thresholds (ETs) based time series of a major pest of jute, S. obliqua Walkar (Lepidoptera: Arctiidae), was investigated on two jute species (Chorchorus olitorious and C. capsularis) during 2017-2019. The population and feeding indices of S. obliqua were significantly (F1,4 8.592,P<0.05) affected by the host phytoconstituents in terms of host suitability or susceptibility (C. olitorious<C. capsularis). The average ET was 3.787±1.539 pests plant-1on C. capsularis which was significantly lower (F1,4=9.530, P<0.05) than C. olitorious (4.323±0.897 pests plant-1) due to higher host preference by S. obliqua. For a single pest per plant, the possible time (Tt) to reach ET was 14.781±5.973 days on C. capsularis which was lower than that in C. olitorious (16.456±2.522 days). Host preference and population dynamics-based ET calculation of S. obliqua could thus support time-based management strategy and trap cropping for sustainable pest management.

Author Biography

Nayan Roy, Assistant professor Department of Zoology Ecology Research Unit MUC Women's College Purba Burdwan-713104 ORCID ID: 0000-0002-0114-0596

I, Dr Nayan Roy, have achieved my B.Sc. in Zoology from Hooghly Mohasin College under University of Burdwan in 2006 and M.Sc. in Zoology with specialization in Ecology & Environment from Department of Zoology, University of Burdwan in 2008. In the mean time, I have qualified the CSIR-NET (JRF) and SET in Life Sciences in 2008. I have completed my Ph. D. from the Department of Zoology, university of Burdwan, under the supervision of Dr. Anandamay Barik (Assistant Professor). During my course of research, I have published research papers in different peer-reviewed international and national journals from 2010 to till date. I have appointed as an Assistant Professor, Department of Zoology, M.U.C. Women’s College, Burdwan, W. B., India from 01.04.2010 and look forward to fruitful years of teaching and research in different fields of chemical ecology of plant-insect interactions. I have wide research interest and most of my studies have largely focused on insect-plant interaction. I would like to expand my horizon related to chemical ecology of plant-insect interactions for pest management. I have a great interest on top-down and bottom-up regulation of some crop plant by their pests. I am also interested in demographic study and nutritional ecology of the insect pest that may help their ecological management in future. Ultimately it may help me in finding a new approach of agro ecosystem analysis (AESA) based ecological pest management (EPM) for climate smart agriculture (CSA) to human welfare. The new concept of using ecosystem services and green pest management (GPM) leads to the development of ecosystem service based ecological engineering for ecological pest management (ESS-EE-EPM) which will be environmentally safe agricultural technique ever used. It will lead triple- E (Environmental, Ecological and Economical) sustainability for any kind of pest management in near future. Population dynamics based study of pest and defenders will provide the better understanding for application of their better sustainable management. The potential for studying these topics in India is enormous toward applied issues for pest control as well as for fundamental ecology.



Albrecht, A. and Kandji, S. T. 2003. Carbon sequestration in tropical agroforestry systems. Agriculture. Ecos. Env., 99: 15–27.

Anuga, S. W., Gordon, C., Boon, E. and Surugu, J. M. I. 2019. Determinants of climate smart agriculture (CSA) adoption among smallholder food crop farmers in the techiman municipality. Ghana. Ghana J. Geo., 11(1): 124–139.

Applebaum, S. W. 1985. Biochemistry of digestion. In: Kerkot, G.A. and Gillbert, L. I. (eds), Comprehensiv insect physiology, biochemistry and pharmacology, Pergamon Press, New York, Oxford, pp. 279–311.

Aryal, J. P., Jat, M. L., Sapkota, T. B., Chhetri, A. K., Kassie, M., Rahut, D. B. and Maharjan, S. 2018. Adoption of multiple climate smart agricultural practices in the Gangetic plains of Bihar, India. Int. J. Clim. Change Strag. Manag., 10(3): 407–427.

Awmack, C. S. and Leather, S. R. 2002. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Ent., 47: 817–844.

Bernays, E. A. 1981. Plant tannins and insect herbivores: an appraisal. Ecol. Entomol., 6: 353–360.

Bernays, E. A. and Chapman, R. F. 2000. Plant secondary compounds and grasshoppers: beyond plant defenses. J. Chem. Ecol., 26: 1773–1793.

Bhadauria, N. K. S., Bhadauria, N. S. and Jakhmola, S. S. 2001. Larval development and survival of Bihar hairy caterpillar, Spilosoma obliqua (Walk.) on different host plants. Ind. J. Entomol., 63: 475–477.

Bhardwaj, D. K. and Kumari, S. 2016. To study the antifeedant activity of Nimbicidine and Ultineem against IInd Instar larvae of Spilosoma obliqua (Walker) (Lepidoptera: Arctiidae). Eur. J. Biotech. Biosci. 4(1): 35–37.

Bhonwong, A., Stout, M. J., Attajarusit, J. and Tantasawat, P. 2009. Defensive role of tomato polyphenol oxidases against cotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua). J. Chem. Ecol., 35: 28–38.

Birch, L. C. 1948. The intrinsic rate of natural increase of an insect population. J. Animal Ecol., 17: 15–26.

Carey, J. R. 1993. Applied demography for biologists with special emphasis on insects. Oxford University Press, New York, NY, USA, pp. 211.

Carey, J. R. 2001. Insect biodemography. Annu. Rev. Ento., 46: 79–110.

Carvalho, F. P. 2017. Pesticides, environment, and food safety. Food. Ener. Secur., 6(2): 48–60.

Chávez, J.P., Jungmann, D. and Siegmund, S. 2018. A comparative study of integrated pest management strategies based on impulsive control. J. Biol. Dyn., 12(1): 318–341. doi:10.1080/17513758.2018.1446551

Chen, Q., Li, N., Wang, X., Ma, L., Huang, J.-B. and Huang, G.-H. 2017. Age-stage, two-sex life table of Parapoynx crisonalis (Lepidoptera: Pyralidae) at different temperatures. Plos One, 12(3): e0173380. doi:10.1371/journal.pone.0173380

Chhetri, A. K., Aggarwal, P. K., Joshi, P. K. and Vyas, S. 2017. Farmers' prioritization of climate-smart agriculture (CSA) technologies. Agri. Sys., 151: 184–191.

Chowdhury, H., Walia, S. and Dhingra, S. 2012. Bioefficacy of azadirachtin, turmeric oil and their mixture against Bihar hairy caterpillar (Spilosoma obliqua Walk.). Pesticide Res. J., 13(2): 165–172.

Cook, S. M., Khan, Z. R. and Pickett, J. A. 2007. The use of ‘push–pull’ strategies in integrated pest management. Annu. Rev. Ento., 52: 375–400.

Costanza, R., D'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'Neill, R. V., Paruelo, J., Raskin, R. G,, Sutton, P. and van den Belt, M. 1997. The value of the world's ecosystem services and natural capital. Nature, 387(6630): 253–260.

Dadd, R. H. 1985. Nutrition: organisms. In: Kerkot, G. A. & Gillbert, L. I. (eds.), Comprehensive insect physiology, biochemistry and pharmacology, Pergamon Press, New York, Oxford, pp. 313–390.

Damalas, C. A. and Koutroubas, S. D. 2018. Current status and recent developments in biopesticide use. Agriculture, 8(1): 13. doi:10.3390/agriculture 8010013

Dicke, M. 2000. Chemical ecology of host-plant selection by herbivorous arthropods: a multitrophic perspective. Biochem. Syst. Ecol., 28: 601–617.

Dutta, S. and Roy, N. 2016. Life table and population dynamics of a major pest, Leptocorisa acuta (Thunb.) (Hemiptera: Alydidae), on rice and non-rice system. Int. J. Pure & Applied Biosci., 4(1): 199–207.

Genc, H. and Nation, J. L. 2004. Influence of dietary lipids on survival of Phyciodes phaon butterflies (Lepidoptera: Nymphalidae). J. Entomol. Sci., 39: 537–544.

Gotyal, B. S., Selvaraj, K., Meena, P. N. and Satpathy, S. 2015. Host plant resistance in cultivated jute and its wild relatives towards jute hairy caterpillar Spilosoma obliqua (Lepidoptera: Arctiidae). Florida Entomol., 98(2): 721–727.

Gurr, G. M., Wratten, S. D. and Altieri, M. A. 2004. Ecological engineering: a new direction for agricultural pest management. AFBM Journal, 1(1): 28–35.

Gurr, G. M., Wratten, S. D., Landis, D. A. and You, M. 2017. Habitat management to suppress pest populations: Progress and prospects. Annu. Rev. Entomol., 62: 91–109.

Gurung, A., Pudasaini, R., Gaire, B. and Sitaula, S. 2020. Host preference of Bihar hairy caterpillar Spilosoma obliqua in laboratory condition. J. Entomol. Zool. Stud., 8(1): 992–996.

Hails, R. S. 2003. Transgenic crops and their environmental impact. Antenna, 27: 313–319.

Harborne, J. B. 1973. Phytochemical methods: a guide to modern techniques of plant analysis. 2nd edn., Chapman and Hall, New York, pp. 88–185.

Harborne, J. B. 1994. Introduction to Ecological Biochemistry. Academic Press, London.

Heeb, L., Jenner, E. and Cock, M. J. W. 2019. Climate-smart pest management: building resilience of farms and landscape to changing pest threats. J. Pest Sci., 92: 951–969.

Higley, L. G. and Wintersteen, W. K. 1992. A novel approach to environmental risk assessment of pesticides as a basis for incorporating environmental costs into economic injury levels. Ame. Ento., 38: 34–39.

Holden, M. H., Ellner, S. P., Lee, D. H., Nyrop, J. P. and Sanderson, J. P. 2012. Designing an effective trap cropping strategy: The effects of attraction, retention and plant spatial distribution. J. Appl. Ecol., 49: 715–722.

Howe, G. A. and Jander, G. 2008. Plant immunity to insect herbivores. Annu. Rev. Plant Biol., 59: 41–66.

Hutchins, S. H., Higley, L. G. and Pedigo, L. P. 1988. Injury equivalency as a basis for developing multiple-species economic injury levels. J. Econ. Entomol., 81: 1–8.

Jaglan, R. S. and Sircar, P. 1997. Relative toxicity of synthetic pyrethroid emulsion formulations against larvae of Spilosoma obliqua (Walker) and Spodoptera litura (Fab.). J. Insect Sci., 10(1): 52–54.

Kakde A. M., Patel, K. G. and Tayade, S. 2014. Role of life table in insect pest management-a review. IOSR J. Agric. Vet. Sci., 7(1): 40–43.

Kessler, A. and Baldwin, I. T. 2002. Plant responses to insect herbivory: the emerging molecular analysis. Annu. Rev. Plant Biol., 53: 299–328.

Kim, K. H., Kabir, E. and Jahan, S. A. 2017. Exposure to pesticides and the associated human health effects. Sci. Total Env., 575: 525–535.

Krebs, C. J. 1994. Ecology: The experimental analysis of distribution and abundance. 4th edn., Harper Collins College Publishers, New York.

Krebs, J. R., Wilson, J. D., Bradbury, R. B. and Siriwardena, G. M. 1999. The second silent spring? Nature, 400: 611–612.

Kumar, S., Ghorai, A. K., Kumar, M., Nayak, R. K. and Tripathi, A. N. 2014. Cost effective technologies of jute production. Pop. Kheti., 2(2): 12–15.

Kumar, S., Shamna, A., Roy, M. L. and Jha, S. K. 2017. Impact of herbicide application on fibre yield of jute (Corchorus spp.) in West Bengal. Int. J. Sci. Env. Technol., 6(2): 1360–1366.

Lal, R. 2008. Sequestration of atmospheric CO2 into global carbon pool. Energy Env. Sci., 1: 86–100.

Lal, R. 2011. Sequestering carbon in soils of agro-ecosystems. Food Policy, 36: 33–39.

Liu, Z., Li, D., Gong, P. and Wu, K. 2004. Life table studies of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), on different host plants. Env. Ento., 33:1570–1576.

Mathew, L. K. 2016. Botanicals as biopesticides: a review. Int. J. Adv. Res., 4(3): 1734–1739.

Mattson, W. J. Jr. 1980. Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst., 11: 119–161.

Mazumdar, S. P., Kundu, D. K., Dey, R. K., Saha, A. R., Majumdar, B. & Sasmal, S., 2016. Effect of sulphur application on performance of fibre yield of different varieties of jute. Jaf. News, 14(1): 17.

Mobarak, S. H., Roy, N. and Barik, A. 2019. Two-sex life table and feeding dynamics of Spilosoma obliqua Walker (Lepidoptera: Arctiidae) on three green gram cultivars. Bull. Ento. Res., pp. 1–13. doi:10.1017/S0007485319000452

Mohapatra, M. M. and Gupta, P. K., 2018. Evaluation of insecticides against Bihar Hairy Caterpillar, Spilosoma obliqua Walk. on black gram, Vigna mungo (Linn.). Int. J. Curr. Microbiol. App. Sci., 7(6): 605–608.

Naik, R. K. and Karmakar, P. G. 2016. Mechanization of jute cultivation. Agric Engin Today, 40(2): 62–69.

Nation, J. L. 2001. Insect physiology and biochemistry. CRC Press, Boca Raton, FL.

Ndakidemi, B., Mtei, K. and Ndakidemi, P. A. 2016. Impacts of synthetic and botanical pesticides on beneficial insects. Agric. Sci., 7: 364–372.

Parui, A. and Roy, N. 2016. Ecofriendly and sustainable management of Spilosoma obliqua Walker on sesame (Sesamum indicum L.) crops by new botanicals. J. Entomol. Zoo. Stud., 4(6): 349–354.

Pawar, V. M. and Charati, S. N. 2000. Field evaluation of Bacillus thuringiensis formulation against Spilosoma obliqua on groundnut and sunflower crops. Pestology, 24: 14–15.

Pedigo, L. P. 1996. Entomology and pest management. 2nd edn., Prentice-Hall Pub, Englewood Cliffs, NJ, pp. 679.

Pedigo, L. P. and Buntin, G. D. 1994. Handbook of sampling methods for arthropods in agriculture. CRC Press, Boca Raton, FL.

Pedigo, L. P. and Higley, L. G. 1992. A new perspective of the economic injury level concept and environmental quality. Ame. Ento., 38: 12¬–21.

Pedigo, L. P., Hutchins, S. H. and Higley, L. G. 1986. Economic injury levels in theory and practice. Annu. Rev. Ento., 31: 341¬–368.

Price, P. W. 1998. Insect ecology. Wiley, New York.

Rahman, S. and Khan, M. R. 2012. Incidence of pests in jute (Corchorus olitorius L.) ecosystem and pest–weather relationships in West Bengal, India. Arch. Phytopath. Plant Protect., 45(5): 591–607.

Rahman, S. and Khan, M. R. 2006. Incidence of pests and avoidable yield loss in jute, Corchorus olitorius L. Ann. Plant Protect. Sci., 14(2): 304–305.

Ricklefs, R. E. and Miller, G. L. 2000. Ecology. 4th edn., Freeman & Company, New York, pp. 822.

Roy, N. 2014. Role of Chorchorus capsularis phytochemicals on the feeding dynamics of Diacrisia casignetum Kollar (Lepidoptera: Arctiidae). J. Entomol. Zool. Stud., 2: 227–236.

Roy, N. 2015a. Host phytochemicals in regulation of nutritional ecology and population dynamics of Podontia quatuordecimpunctata L.(Coleoptera: Chrysomelidae). Int. J. Hort., 5(4): 1–11. doi: 10.5376/ijh.2015.05.0004

Roy, N. 2015b. Life table and population parameters of Diacrisia casignetum Kollar (Lepidoptera: Arctiidae) on jute, Chorchorus capsularis (cv. Sonali; JRC-321), leaves. Int. J. Fauna Biol. Stud., 2: 23–29.

Roy, N., 2017. Life table and nutritional ecology of Epilachna vigintioctopunctata Fab. (Colioptera: Coccinellidae) on three host plants. Int. J. Hort., 7(2): 7–19. doi: 10.5376/ijh.2017.07.0002

Roy, N. 2019a. Jute leaf physicochemical cues mediated behavioral responses of Diacrisia casignetum Kollar. Agric. Res., 8: 287–296.

Roy, N. 2019b. Life table and economic threshold concept for ecologically sustainable management of Diacrisia casignetum Kollar (Lepidoptera: Arctiidae) on jute. Entomon, 44(2): 103–110.

Roy, N. 2020. Population ecology and ETs based time series for climate smart pest management of Spilosoma obliqua Walker. Entomon, 45(1): 15–30.

Roy, N. and Barik, A. 2012. The impact of variation in foliar constituents of sunflower on development and reproduction of Diacrisia casignetum Kollar (Lepidoptera: Arctiidae). Psyche, vol. 2012: 9 pages. doi:10.1155/2012/812091

Roy, N. and Barik, A., 2013. Influence of four host plants on feeding, growth and reproduction of Diacrisia casignetum (Lepidoptera: Arctiidae). Ento. Sci., 16(1): 112–118.

Sarkar, S. and Majumdar, B. 2013. Feasibility of growing intercrops with jute (Corchorus olitorius L.) grown for seed production in West Bengal. Ind. J. Crop Weed, 9(1): 36–37.

Sarkar, S. and Majumdar, B. 2016. Present status of jute production and technological and social interventions needed for making jute agriculture sustainable and remunerative in West Bengal. Ind. J. Natural Fibres, 3(1): 23–36.

Sarkar, S. C., Wang, E., Wu, S. and Lei, Z. 2018. Application of trap cropping as companion plants for the management of agricultural pests: a review. Insects 9: pp.16, Id.128. doi:10.3390/insects9040128

Sarkar, S. K. and Gawande, S. P. 2016. Diseases of jute and allied fibre crops and their management. J. Mycopath. Res., 54(3): 321–33.

Schoonhoven, L. M., Van Loon, J. J. A. and Dicke, M. 2005. Insect-plant biology. Oxford University Press, Oxford.

Schowalter, T. D. 2006. Insect ecology: an ecosystem approach. 2nd edn., Academic Press, Tokyo.

Scriber, J. M. and Slansky, F. Jr. 1981. The nutritional ecology of immature insects, Annu. Rev. Ento., 26: 183–211.

Shobana, K., Murugan, A. and Kumar, N. 2010. Influence of host plants on feeding, growth and reproduction of Papilio polytes (the common mormon). J. Insect Physiol., 56:1065–1070.

Simmonds, M. S. J. 2003. Flavonoid-insect interactions: recent advances in our knowledge. Phytochem., 64: 21–30. doi. org/10.1016/S0031-9422(03)00293-0

Singh, I. and Singh. G. 1992. Assessment of foliage loss caused by different laraval instars of Bihar hairy caterpillar, Spilosoma obliqua (Walker) on sunflower. J. Insect Sci., 6 (2): 185–186.

Slansky, F. and Scriber, J. M. 1985. Food consumption and utilization. In: Kerkot G. A. and Gillbert, L. I. (eds.), Comprehensive insect physiology, biochemistry and pharmacology. Pergamon, Oxford, England, pp. 87–113.

Southwood, T. R. E. 1978. Ecological methods particular reference to study of insect population. The English Language Book Society and Chapman and Hall, London, pp. 524.

Southwood, T. R. E. and Henderson, P. A. 2000. Ecological Methods. 3rd edn., Blackwell Science, Oxford, pp. 575.

Southwood, T. R. E. and Norton, G. A. 1973. Economic aspects of pest management strategies and decisions. Ecol. Soc. Aust. Mem., 1: 168¬–184.

Subedi, R., Bhatta, L. D., Udas, E., Agrawal, N. K., Joshi, K. D. and Panday, D. 2019. Climate-smart practices for improvement of crop yields in mid-hills of Nepal. Cogent Food Agric., 5: 1631026.

Treutter, D. 2006. Significance of flavonoids in plant resistance: a review. Env. Chem. Lett., 4: 147–157.

Turunen, S. 1990. Plant leaf lipids as fatty acid sources in two species of Lepidoptera. J. Insect Physiol., 36: 665–672. (90)90071-M

Waldbauer, G. P. 1968. The consumption and utilization of food by insects. Adv. Insect Physiol., 5: 229–288.

Wang, Z. B., Zhang, H. L., Lu, X. H., Wang, M., Chu, Q. Q., Wen, X. Y. and Chen, F. 2016. Lowering carbon footprint of winter wheat by improving management practices in North China Plain. J. Cleaner Prod., 112: 149–157.

War, A. R., Paulraj, M. G., Ahmad, T., Buhroo, A. A., Hussain, B., Ignacimuthu, S. and Sharma, H. C. 2012. Mechanisms of plant defence against insect herbivores. Plant Sig. Behav., 7: 1306–1320.

Wolfenbarger, L. L. and Phifer, P. R. 2000. The ecological risks and benefits of genetically engineered plants. Science, 290: 2088–2093.

Xue, M., Pang, Y. H., Wang, H. T., Li, Q.-L. and Liu, T.-X. 2010. Effects of four host plants on biology and food utilization of the cutworm, Spodoptera litura. J. Insect Sci., 10: 1–14.

Zar, J. H. 1999. Biostatistical analysis. Prentice Hall, Upper Saddle River, New Jersey, USA.




How to Cite

Roy, N. (2023). Life Table Based ETs and Time Series for Sustainable Management of Spilosoma obliqua Walkar on Jute. Journal of Tropical Agriculture, 60(2). Retrieved from




Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.