Funneliformis mosseae enhanced growth, tuber yield and P-uptake of Solenostemon rotundifolius under acidic and lateritic soil of Kerala

K. Anusha, K. Surendra Gopal, B. Ajithkumar


A field experiment was conducted to determine the effect of different arbuscular mycorrhizal fungi on growth, yield and phosphorus uptake in Solenostemon rotundifolius (Chinese potato) under acidic and lateritic soil of Thrissur district in Kerala. Per cent AMF root colonization was maximum (93.33%) in Rhizophagus fasciculatus (T1), Funneliformis mosseae (T2), Acaulospora sp. (T4) and consortium (T6) treated plants. Similarly, Funneliformis mosseae (T2) recorded the tallest plants, and the highest root biomass and dryweight. However, among the treatments, AMF consortium (T6) treated plants recorded the highest (16.98t ha-1) tuber yield, which was on par with Rhizophagus fasciculatus (T1), Funneliformis mosseae (T2), Acaulospora sp. (T4) and POP recommendations of KAU, 2016 (T7). Phosphorus uptake was maximum(60.06 kg ha-1) in Funneliformis mosseae (T2) and the lowest in absolute control. Based on biometric characters, tuber yield and P-uptake, Funneliformis mosseae was the most efficient biofertilizer for Chinese potato.


Chinese potato, Solenostemon rotundifolius, Funneliformis mosseae, Yield, Acidic and lateritic soil

Full Text:



Abdel-Salam, E., Alatar, A. and El-Sheikh, M.A. 2018. Inoculation with arbuscular mycorrhizal fungi alleviates harmful effects of drought stress on damask rose. Saudi J. Biol. Sci. 25(8): 1772-1780.

Bhardwaj, A.K. and Chandra, K.K. 2018. Soil moisture fluctuation influences AMF root colonization and spore population in tree species planted in degraded entisol soil. Int. J. Biosci. 13(3): 229- 243.

Chen, M., Yang, G., Sheng, Y., Li, P., Qiu, H., Zhou, X., Huang, L. and Chao, Z. 2017. Glomus mosseae inoculation improves the root system architecture, photosynthetic efficiency and flavonoids accumulation of liquorice under nutrient stress. Front. Plant Sci. 8:931.

Clark, R.B. 1997. Arbuscular mycorrhizal adaptation, spore germination, root colonization, and host plant growth and mineral acquisition at low pH. Plant Soil, 192:15-22.

Elahi, F.E., Mridha, M.A.U. and Aminuzzaman, F.M. 2012. Role of AMF on plant growth, nutrient uptake, arsenic toxicity and chlorophyll content of chili grown in arsenic amended soil. Bangladesh J. Agric. Res. 37(4): 635-644.

Eulenstein, F., Tauschke, M., Behrendt, A., Monk, J., Schindler, U., Lana, M. and Monk, S. 2017. The application of mycorrhizal fungi and organic fertilizers in horticultural potting soils to improve water use efficiency of crops. Horticulturae, 3(1): 8.

Tchinmegni, F.I., Tsobeng, A.C., Ngonkeu, M.E.L. and Tchoundjeu, Z. 2017. Chemical property of soil and mycorrhizal status in Allanblackia floribunda Oliver (Clusiaceae). Int. J. Res. Agric. For. 4(1): 21-29.

Flor-Peregrín, E., Azcón, R., Martos, V., Verdejo-Lucas, S. and Talavera, M. 2014. Effects of dual inoculation of mycorrhiza and endophytic, rhizospheric or parasitic bacteria on the root-knot nematode disease of tomato. Biocontrol Sci. Technol. 24(10): 1122-1136.

Gerdemann, J.W. and Nicholson, T.H. 1963. Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Trans. British Mycol. Soc. 46: 235-244.

Hashem, A., Kumar, A., Al-Dbass, A.M., Alqarawi, A.A., Al-Arjani, A.B.F., Singh, G., Farooq, M. and Abd-Allah, E.F. 2019. Arbuscular mycorrhizal fungi and biochar improves drought tolerance in chickpea. Saudi J. Biol. Sci. 26(3): 614-624.

Ingraffia, R., Amato, G., Frenda, A.S. and Giambalvo, D. 2019. Impacts of arbuscular mycorrhizal fungi on nutrient uptake, N2 fixation, N transfer, and growth in a wheat/faba bean intercropping system. PloS one, [e- journal] 14(3). Available: p.e0213672. [1 May 2018].

Jackson, M.L. 1973. Soil Chemical Analysis. Prentice Hall of India Private Limited, New Delhi, 498 p.

Kabir, Z. 2005. Tillage or no-tillage: impact on mycorrhizae. Can. J. Plant Sci. 85:23–29.

Karthikeyan, B., Jaleel, C. A., Changxing, Z., Joe, M. M., Srimannarayan, J., and Deiveekasundaram, M. 2008. The effect of AM fungi and phosphorous level on the biomass yield and ajmalicine production in Catharanthus roseus. EurAsian J. Biosci. 2: 26-33.

KAU [Kerala Agricultural University]. 2016. Package of Practices Recommendations: Crops (15th Ed.). Kerala Agricultural University, Thrissur, 393p.

KAU [Kerala Agricultural University]. 2017. Package of Practices Recommendations (Organic): Crops. Kerala Agricultural University, Thrissur, 328p.

Kavitha, T. and Nelson, R. 2014. Effect of arbuscular mycorrhizal fungi (AMF) on growth and yield of sunflower (Helianthus annuus L.). J. Exp. Biol. Agric. Sci. 2: 227-232.

Kennedy, Z.J. and Rangarajan, M. 2001. Biomass production, root colonization and phosphatase activity by six VA-mycorrhizal fungi in papaya. Indian Phytopathol., 54(1): 72-77.

Meyer, J.R. and Linderman, R.G. 1986. Response of subterranean clover to dual inoculation with vesicular-arbuscular mycorrhizal fungi and a plant growth-promoting bacterium, Pseudomonas putida. Soil Biol. Biochem. 18(2): 185-190.

Mustafa, A.A., Othman, R., Abidin, M.Z., and Ganesan, V. 2010. Growth response of sweet corn (Zea mays) to Glomus mosseae inoculation over different plant ages. Asian J. Plant Sci. 9(6): 337- 343.

Mustafa, G., Khong, N.G., Tisserant, B., Randoux, B., Fontaine, J., Magnin-Robert, M., Reignault, P. and Sahraoui, A.L.H. 2017. Defense mechanisms associated with mycorrhiza-induced resistance in wheat against powdery mildew. Funct. Plant Biol. 44(4): 443-454.

Onguene, N.A. 2000. Diversity and dynamics of mycorrhizal associations in tropical rain forests with different disturbance regimes in south Cameroon. Ph.D. dissertation, Wageningen University and Research, Center Wageningen, NL, pp 167.

Oyetunji, O.J. and Afolayan, E.T. 2007. The relationship between relative water content, chlorophyll synthesis and yield performance of yam (Dioscorea rotundata) as affected by soil amendments and mycorrhizal inoculation. Arch. Agron. Soil Sci. 53(3):335–344


Philips, J.M. and Hayman, D.S. 1970. Improved procedures for clearing and staining parasites and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55: 158-161.

Potty, V.P. 1982. Growth of vesicular arbuscular mycorrhizae (VAM) in coleus and sweet potato and soil spore distribution in respective rhizospheres. Ann. Report CTCRI. 146-148.

Potty, V.P. 1990. VAM association in tuber crops and their role in crop production. In Annu. Progress report, CTCRI, Trivandrum pp,81-83.

Potty, V.P. 2005. Mycorrhizal technology for enhancing production of tropical tuber crops. In: Prakash, A. and Malhotra, V. (eds), Mycorrhiza. Scientific publishers, pp. 227-231

Prasad, R. and Mertia, R.S. 2005. Dehydrogenase activity and VAM fungi in tree-rhizosphere of agroforestry systems in Indian arid zone. Agroforest. Syst. 63: 219- 223.

Priya, M.H. and Anbuselvi, S. 2013. Physico chemical analysis of Plectranthus rotundifolius. J. Chem. Pharma. Res. 5(3):12-14.

Rohyadi, A., Smith, F.A. and Smith, S.E. 2004. Effects of pH on mycorrhizal colonization and nutrient uptake in cowpea under conditions that minimize confounding effects of elevated available aluminium. Plant Soil, 260: 283–290.

Sankaranarayanan, C. and Sundarababu, R. 2010. Influence of application methods of arbuscular mycorrhiza Glomus mosseae in the bio-management of root knot nematode, Meloidogyne incognita on black gram (Vigna mungo l.). Hepper. J. Biol. Control, 24 (1): 51–57.

Saraswati, P., Purnomo, W.D. and Mawikere, N.L. 2012. May. The effectiveness of AM fungal in improving the tolerance of sweet potato plants to drought stress. In: International Conference on Agricultural, Environment and Biological Sciences, pp. 55-58.

Saritha, B., Panneerselvam, P., Mohandas, S., Sulladmath, V.V. and Ravindrababu, P. 2014. Studies on host preference of Glomus sp and their synergistic effect on sapota (Manilkara achras mill) Forsberg) seedlings growth. Plant Arch. 14(2): 701-706.

Schenck, N.C. and Smith, G.S. 1982. Responses of six species of vesicular‐arbuscular mycorrhizal fungi and their effects on soybean at four soil temperatures. New Phytol. 92(2): 193-201.

Sharma, D. and Kayang, H. 2017. Effects of arbuscular mycorrhizal fungi (AMF) on Camellia sinensis (L.) O. Kuntze under greenhouse conditions. J. Exp. Biol. 5: 235-241.

Smith, S.E. and Read, D.J. 1997. Mycorrhizal Symbiosis. San Diego, CA. Academic Press, USA.

Smith, S.E. and Read, D.J. 2008. Mycorrhizal Symbiosis (3rd Ed.) Academic Press, London, UK.

Song, Y., Chen, D., Lu, K., Sun, Z. and Zeng, R. 2015. Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Front. Plant Sci. 6: 786.

Tahat, M.M., Kamaruzaman, S., Radziah, O., Kadir,U. and Masdek, Z.H.N. 2008. Response of (Lycopersicum esculentum Mill.) to different arbuscular mycorrhizal fungi species. Asian J. Plant Sci. 7(5): 479-484.

Verzeaux, J., Nivelle, E., Roger, D., Hirel, B., Dubois, F. and Tetu, T. 2017. Spore density of arbuscular mycorrhizal fungi is fostered by six years of a no-till system and is correlated with environmental parameters in a silty loam soil. Agron. 7(2): 38.

Yaseen, T., Khan, Y., Rahim, F., Wali, S., Ahmad, I., Begum, H.A., and Ghani, S.S. 2016. Arbuscular mycorrhizal fungi spores diversity and AMF infection in medicinal plants of district Charsadda khyber pakhtunkhwa. Pure Appl. Biol. 4(4): 1176


  • There are currently no refbacks.

A KAU publication [CODEN: JTAGEI; ISSN 0971-636X; eISSN 0973-5399]