Evaluation of Bacillus thuringiensis isolates against Diaphania indica (Saund.) (Lepidoptera: Crambidae)

Janish Rose Jacob, D. Girija, Maicykutty P. Mathew, K Surendra Gopal

Abstract


A study was conducted to develop a commercial formulation of Bacillus thuringiensis and evaluate its bioefficacy for the management of pumpkin caterpillar, Diaphania indica (Saund.). Twenty native isolates of B. thuringiensis obtained from the Western Ghats of Kerala and maintained in the repository of the Department of Agricultural Microbiology, College of Horticulture, Thrissur, Kerala were characterized by morphological, biochemical and molecular tests. PCR assay for insecticidal genes revealed the presence of cry1 gene in 35 per cent of the isolates. Blastn analysis of cry1 amplicons revealed homology with cry1A, cry1Ac and cry1Aa genes, ranging from 93 to 96 per cent identity. The native isolate KAU-2189 showed highest per cent mortality against D. indica at all the spore concentrations tested. Coconut water was found to be the best low cost substrate for the mass production of B. thuringiensis and the formulation based on coconut water broth was effective in controlling D. indica in pot culture experiment, on little gourd (Coccinia indica). The shelf life of the formulations was three months.


Keywords


Bacillus thuringiensis, cry gene, Diaphania indica, coconut water, T3 broth, soy flour broth

Full Text:

PDF

References


Ben-Dov, E., Zaritsky, A., Dahan, E., Barak, Z. E., Sinai, R., Manasherob, R., Khamraev, A., Troitskaya, E, Dubitsky, A., Berezina, N., and Margalith, Y. 1997. Extended screening by PCR for seven cry-group genes from field-collected strains of Bacillus thuringiensis. Appl. Environm. Microbiol. 63(12):4883-90.

Cappucino, J. G. and Sherman, N. 1992. Microbiology- A laboratory manual. The Benjamin/ Cummings Publishing Company, Inc., New York, 168p.

Das, A., Tulsian, T., (Samanta) and Kaviraj, A. 2015. Morphological and biochemical characterization of four new Bacillus thuringiensis strains. Int. J. Curr. Res. 7 (6): 17137-17143.

Dhingra, H. K. 2012. Bio-efficacy of liquid formulation of Bacillus thuringiensis BtIII against Helicoverpa armigera under field condition in different fields. Bioscan. 7(2): 205-209.

Girija, D. and Mathew, M. P. 2009. Progress report. Exploration of the molecular diversity and insecticidal spectrum of the isolates of the Western Ghats of India and the NE hill regions, establishment of Repository at UAS, Dharwad and cloning novel genes. Kerala Agricultural University, Thrissur, 61p.

Jacob, J. S. 2008. Bio-efficacy and molecular characterization of the native isolates of Bacillus thuringiensis Berliner. M. Sc. (Ag.) Thesis, Kerala Agricultural University, Thrissur. 117p.

Juarez-Perez, V. M., Ferrandis, M. D., and Frutos, R. 1997. PCR based approach for detection of novel Bacillus thuringiensis cry genes. Appl. Environ. Microbiol. 63(8): 2997-3002.

Kandibane, M., Kumar, K., and Adiroubane, D. 2010. Effect of Bacillus thuringiensis Berliner formulation against the rice leaf folder Cnaphalocrocis medinalis Guenee (Pyralidae: Lepidoptera). J. Biopestic. 3(2): 445-447.

Khojand, S., Keshavarzi, M., Zargari, K., Abdolahi, H., and Rouzbeh, F. 2013. Presence of multiple cry genes in Bacillus thuringiensis isolated from dead cotton bollworm Heliothis armigera. J. Agric. Sci. and Technol. 15(6): 1285-1292.

Lalitha, C. and Muralikrishna, T. 2012. Laboratory evaluation of native Bacillus thuringiensis isolates against Spodoptera litura (Fabricius). Current Biotica. 5(4): 428-435.

Lalitha, C., Muralikrishna, T., Sravani, S., and Devaki, K. 2012. Invitro evaluation of native Bacillus thuringiensis isolates against II instar Spodoptera litura (Fabricius). Ann. Pl. Protec. Sci. 20 (1): 91-97.

Mathew, M. P., Girija, D. and Aipe, K. C. 2010. A new semisynthetic diet for Diaphania indica Saunders. In Proc. 21st Kerala Science Congress, 28-31, Jan., 2010 at KFRI, Peechi, Trichur, Kerala.

Prabakaran, G., Hoti, S. L., Manonmani, A. M., and Balaraman, K. 2008. Coconut water as a cheap source for the production of endotoxin of Bacillus thuringiensis var. israelensis, a mosquito control agent. Acta Trop. 105: 35–38.

Rasko, D. A., Altherr, M. R., Han, C. S., and Ravel, J. 2005. Genomics of the Bacillus cereus group of organisms. FEMS Microbiol. Rev. 2: 303-29.

Sambroook, J., Fritsch, E. F., and Maniatis, T. 1989. Molecular cloning: A Laboratory Manual. (2nd Ed.). Cold Spring Harbor Laboratory Press, New York, USA, 1322p.

Schesser, J. H., Kramer, K. J., and Bulla, L. A. 1977. Bioassay for homogeneous parasporal crystal of Bacillus thuringiensis using the tobacco hornworm, Manduca sexta. Appl. Environ. Microbiol. 33(4): 878-880.

Sharif, F. A. and Alaeddinoglu, N. G. 1988. A rapid and simple method for staining of the crystal protein of B. thuringiensis. J. Indian. Microbiol. 3: 227- 229.

Shishir, A., Roy, A., Islam, N., Rahman, A., Khan, S. N., and Hoq, M. 2014. Abundance and diversity of Bacillus thuringiensis in Bangladesh and their cry genes profile. Front. Environ. Sci. 2:20.

Tamez-Guerra, P., Castro-Franco, R., Medralno-Roldan, H., McGuire, M. R., Galan-Wong, L. J. and Luna-Olvera, H. A. 1998. Laboratory and field comparisons of strains of Bacillus thuringiensis for activity against noctuid larvae using granular formulations (Lepidoptera). J. Econ. Entomol. 91 (1): 86-93.

Zafar, A. U., Karim, S., Nasir, I. A., Riazuddin, S. 2000. Shelf life and field evaluation of CAMB Bacillus thuringiensis biopesticide against Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) on tomato. Pak. J. Biol. Sci. 3(5): 804-807.


Refbacks

  • There are currently no refbacks.


A KAU publication [CODEN: JTAGEI; ISSN 0971-636X; eISSN 0973-5399]