Introgression of Sub1 QTL into an elite rice (Oryza sativa L.) variety Jyothi through Marker Assisted Backcross Breeding
Keywords:
Flood tolerance, Introgression, Marker Assisted Backcross Breeding (MABB), Sub1 QTL, Submergence toleranceAbstract
Sub1 QTL for submergence tolerance was introgressed into the most popular rice variety of Kerala, Jyothi, from the donor parent Swarna-Sub1 using Marker Assisted Backcross Breeding. For the foreground and recombinant selection of the F1 as well as the backcross populations, molecular markers linked to Sub1locus and markers flanking the locus, respectively, were used. Markers unlinked to the Sub1locus were used for background selection among the selected progeny. Selected BC2F2progeny were found to have recurrent parent genome recovery in the range of 83.4 - 85.9%. The size of the introgressed donor fragment into the selected lines was estimated to be 1.6 - 5.6 Mb. Analysis of the selected BC3F2progeny showed the recipient parent genome recovery varying from 92.1 - 98.9% with the introgressedSub1 donor fragment size ranging from 4.2 - 5.6 Mb. The survival score of the developed BC2F2 and BC3F2 lines were same as that of the donor parent, confirming the introgression of Sub1 QTL.References
Collard, B.C.Y.a nd Mackill, D.J.2007. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Trans Royal Soc B; 363:557-572
Doyle, J.J. and Doyle, J. L.1987.A rapid DNA isolation procedure for small quantities of fresh leaf tissue.Phytochem. Bull., 19: 11-15.
Frisch, M., Bohn, M. and Melchinger, A.E. 1999. Comparison of selection strategies for marker-assisted backcrossing of a gene. Crop Sci., 39:1295–1301.
Frisch, M. And Melchinger, A.E. 2005. Selection theory for marker-assisted backcrossing. Genetics., 170:909–917
Garland, S. H., Lewin, L., Abedinia, M., Henry, R. and Blakeney, A. 1999. The use of microsatellite polymorphisms for the identification of Australian breeding lines of rice (Oryza sativa L). Euphytica., 108: 53-63.
Hospital, F. and Charcosset, A. 1997. Marker-assisted introgression of quantitative trait loci. Genetics; 147:1469 -1485.
Hospital, F. 2003. Marker-assisted breeding. In: Newbury HJ (ed) Plant molecular breeding. Blackwell Publishing, Oxford, pp 30–59.
Iftekharuddaula K, Newaz M, Salam M, et al. Rapid and high-precision marker assisted backcrossing to introgress the SUB1 QTL into BR11, the rainfed lowland rice mega variety of Bangladesh. Euphytica. 2011;178(1):83-97.
Ismail, A.M., Singh, U. S., Singh, S., Dar, M. H. and Mackill, D. J. 2013. The Contribution of Submergence-Tolerant (Sub1) Rice Varieties to Food Security in Flood-Prone Rainfed Lowland Areas in Asia. Field Crops Research., 152 : 83-93.
Jayan, P.R. and Nithya,S. 2010. Overview of farming practices in the water-logged areas of Kerala, India. Int. J. Agric. & Biol. Eng; 3(4): 28-43.
Khush,G.S.1999.Green revolution:preparing for the 21st century. Genome., 42: 646–655.
Mackill, D.J., Collard, B.C.Y., Neeraja, C.N., Rodriguez, R.M., Heue,r S. and Ismail, A.M. 2006. QTLs in rice breeding: examples for abiotic stresses. In: Brar DS, Mackill DJ, Hardy B (eds) Rice genetics 5: proceedings of the international rice genetics symposium. International Rice Research Institute, Manila, pp 155–167
Mackill, D. J., Ismail, A. M., Singh, U. S., Labiosand, R.V. and Paris, T. R. 2012. Development and Rapid Adoption of Submergence-Tolerant (Sub1) Rice Varieties. Adv.Agron., 115: 303-356.
McCouch, S. R., Chen, X., Panaud, 0., Temnykh, S., Xu, Y., Cho, Y.G., Huang, N., Ishii, T and Blair, M. 1997. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant. Mol. Bol., 35: 89-99.
Nandi, S., Subudhi, P.K., Senadhira, D., Manigbas, N.L., Sen-Mandi, S. and Huang, N.1997. Mapping QTLs for submergence tolerance in rice by AFLP analysis and selective genotyping. Mol. Gen. Genet., 255:1–8.
Neeraja, C., Maghirang-Rodriguez, R., Pamplona A, Heuer, S., Collard, B.C.Y., Septiningsih E. M., Vergara, G., Sanchez. D., Xu, K., Ismail, A.M. and Mackill, D.J. 2007. A marker-assisted backcross approach for developing submergence- tolerant rice cultivars. Theor. Appl. Genet.,115(6):767-776.
Ralph, V. B. GGT 2.0: Versatile Software for Visualization and Analysis of Genetic Data. J. Hered. 2008:99(2):232–236.
Septiningsih, E. M., Pamplona, A.M., Sanchez, D.L., Neeraja, C.N., Vergara, G.V., Heuer, S., Ismail, A.M. and Mackill, D. J. 2009. Development of Submergence Tolerant Rice Cultivars: The SUB1 Locus and Beyond. Ann. of Bot., 103(2): 151-160.
Septiningsih, E.M., Collard B.C.Y., Heuer, S., Bailey- Serres, J., Ismail, A.M. and Mackill, D.J. 2013. Applying Ge- nomics Tools for Breeding Submergence Tolerance in Rice. In: Varshney, R. K. and Tuberosa, R.Eds., Trans- lational Genomics for Breeding: Abiotic Stress, Yield and Quality, 1st Edition, John Wiley and Sons, New York pp 9-30.
Tanksley, S. D., Young, N. D., Paterson, A. H. and Bonierbale, M. W. 1989. RFLP mapping in plant breeding: new tools for an old science. Biotechnology., 7:257–264.
Xi, Z. Y., He, F. H., Zeng, R. Z., Zhang, Z. M., Ding, X. H., Li, W. T and Zhang, G. Q. 2008. Development of a wide population of chromosome single-segment substitution lines in the genetic background of an elite cultivar of rice (Oryza sativa L.). Genome., 49 (5):476-484.
Xu, K., Mackill, D.J. 1996. A major locus for submergence tolerance mapped on rice chromosome 9. Mol. Breed., 2:219–224.
Xu, K Xu, X., Ronald, P.C. and Mackill, D.J. 2000. A high-resolution linkage map in the vicinity of the rice submergence tolerance locus Sub1. Mol. Gen. Genet., 263:681–689.
Xu, K., Xia, X., Fukao, T., Canlas, .P., Maghirang-Rodriguez, R., Heuer, S., Ismail, A.I., Bailey-Serres, J., Ronald, P.C. and Mackill, D.J. 2006. Sub1A is an ethylene response factor-like gene that confers submergence tolerance to rice. Nature., 442:705–708.
Yang, G. P., Maroof, M. A. S., Xu, C. G., Zhang, Q. and Biyashcv, R. M. 1994. Comparative analysis of microsatellite DNA polymorphism in land races and varieties of rice. Mol. Gen. Genet., 245: 187-194.
Downloads
Published
How to Cite
Issue
Section
License
Copyright © 2001-11 Kerala Agricultural University. Some rights reserved. This journal and the individual contributions contained in it are protected under copyright by the Kerala Agricultural University and the following terms and conditions apply to their use; Photocopying Single photocopies of single articles may be made for personal use as allowed by national copyright laws. Permission of the publisher and payment of a fee is required for all other photocopying including multiple or systematic copying, copying for advertising or promotional purposes, resale, and all forms of document delivery. Permission may be sought directly from the Editor, Journal of Tropical Agriculture, Department of Agronomy, College of Horticulture,, Kerala Agricultural University, KAU PO, Thrissur 680 656, Kerala, India. (Phone: +91-487-2438325; Fax +91-487-2371040; E-mail: editor.jta@kau.in. Derivative works Subscribers may reproduce tables of contents or prepare lists of articles including abstracts for internal circulation within their institution. Permission of the Publisher is required for resale or distribution outside the institution. Permission of the Publisher is required for all other derivative works, including compilations and translations. Notice No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products, liability, negligence, or otherwise, or from any use of any methods, products, instructions or ideas contained in the material herein.