

Revolutionizing ornamental foliage: The impact of nutrients on Dracaena reflexa 'song of India' growth, yield and quality in cut foliage production

R. Rashika* and P. Karuppaiah

Department of Horticulture (Floriculture and Landscaping), Faculty of Agriculture, Annamalai University, Annamalainagar-608 002, Tamil Nadu, India

Received on 08 May 2025; received in revised form 08 September 2025, accepted 16 October 2025

Abstract

Dracaena reflexa is a commercially important ornamental foliage plant known for its vibrant, variegated leaves and airpurifying properties. However, achieving optimal growth in tropical climates requires efficient nutrient management. Nano urea and mono potassium phosphate (MKP) boost nutrient uptake, photosynthesis, and stress tolerance, overcoming the inefficiencies of traditional fertilizers. Therefore, the present study was conducted during 2024 - 2025 at the Department of Horticulture, Annamalai University, Tamil Nadu, to assess the effects of nano urea and mono potassium phosphate (MKP) on the growth, yield, and quality of Dracaena reflexa 'Song of India' under tropical conditions. The experiment was conducted in a (FRBD) Factorial Randomized Block Design with four levels of nano urea (0%, 0.1%, 0.2%, 0.3%) and mono potassium phosphate (MKP) (0%, 0.25%, 0.50%, 0.75%), applied weekly. Results indicated that the combination of 0.3% nano urea and 0.75% MKP significantly enhanced plant height (55.12 cm), stem girth (4.12 cm), foliage yield (11.38 cut stems/m²), and quality. This study highlights the importance of targeted foliar nutrition for sustainably maximizing Dracaena reflexa 'Song of India' productivity.

Keywords: Cut foliage, Dracaena reflexa 'Song of India', Foliar nutrition, Mono potassium phosphate (MKP), Nano urea

Introduction

Floriculture has emerged as a rapidly growing and economically significant sector worldwide. The floriculture industry generated INR 707.81 crores in exports in India during 2022-23 (Sowmya and Harisha, 2024). Cut foliage forms a vital component of this sector, complementing the cut flower trade and contributing significantly to national and international markets (Herath et al., 2013). India's cut foliage exports have experienced fluctuations over the years but have maintained an overall upward trend, reaching 149.51 metric tons and earning Rs. 154.77 lakhs in 2022-23 (APEDA, 2023). Cut foliage refers to vegetation used extensively for decorative purposes, on its own or in floral arrangements. Evergreen plants with green, silver, or variegated leaves are preferred, while species bearing berries are also gaining popularity (Meghana et al., 2023). Common examples include Asparagus spp., Aspidistra elatior, Codiaeum variegatum, Cyperus spp., Dracaena spp., Hedera helix, Ruscus hypophyllum, and various wild grasses. Additionally, woody plants' foliage and branches, such as Callistemon spp. (bottle brush), Cycas revoluta, Cycas circinalis, Eucalyptus spp., Euonymus spp., Livistona spp.,

Murraya paniculata, and various palm species are frequently used in floral designs (Bhattacharjee, 1999). Among these, Dracaena reflexa 'Song of India', a member of the Asparagaceae family, is widely cultivated for its striking chartreuse foliage and long vase life, making it a preferred cut foliage crop for export (Athulya and Singh, 2021). Native to Madagascar and surrounding islands, it thrives under partial shade and adapts to diverse soil types (Gilman, 1999). In India, it is cultivated for various purposes, including its use in cut foliage, bouquet-making, flower arrangements, and ornamental gardening and is valued for its air-purifying ability, as recognized by NASA's Clean Air Study (Athulya and Singh, 2021).

Despite its importance, there is limited reliable scientific information on optimal nutrient management practices for Dracaena reflexa in tropical environments. Among various aspects of cultivation practices, the balanced fertilizer application is essential for the quality production of cut greens. However, nano-fertilizers have opened new avenues for achieving efficient nutrient uptake with minimal environmental impact. Nano urea enhances nitrogen uptake due to its high surface area and controlled release (Verma et

^{*} Author for Correspondences: Phone :; Email: rashikaravi0506199@gmail.com, vpkhortic@yahoo.com

al., 2023), while mono potassium phosphate provides readily available phosphorus and potassium, essential for photosynthesis, root growth, and stress tolerance (Rawat et al., 2022). Hence, the present study was undertaken to assess the impact of foliar-applied nano urea and mono potassium phosphate on the growth, yield, and quality of *Dracaena reflexa* 'Song of India' under tropical conditions, aiming to develop a targeted nutrient strategy for sustainable cut foliage production.

Materials and methods

The present experiment was conducted from 2024 - 2025 to evaluate the effects of nano urea (N) and mono potassium phosphate (MKP) on the growth, yield, and quality of Dracaena reflexa 'Song of India' at Kallampatti village, Pattukkottai, Thanjavur, Tamil Nadu and the quality analysis was carried out at the Department of Horticulture, Annamalai University, Annamalainagar, Tamil Nadu. The experimental site location is at an altitude of ± 28 m above mean sea level (MSL), latitude of 10°19' North and longitude of 79°15' East. The average maximum temperature is 33° C, whereas the average minimum temperature is 26° C. The annual average rainfall is 814.4 mm. The mean relative humidity is 64.5 percent. A Factorial Randomized Block Design (FRBD) was employed with 16 treatments replicated three times. It consisted of two factors: nitrogen (nano urea) and phosphorus-potassium (mono potassium phosphate), with four levels each. The nano urea treatments included N₀ (0.0%), $N_1(0.1\%)$, $N_2(0.2\%)$, and $N_3(0.3\%)$, while the mono potassium phosphate treatments consisted of MKP₀ (0.0%), MKP₁ (0.25%), MKP₂, (0.50%), and MKP₃ (0.75%), all applied at weekly intervals. Since Dracaena reflexa is a foliage plant that requires adequate shade for optimal growth and development, a 60% green shade net was used to regulate light conditions (Rashika and Karuppaiah, 2025b). The main field was prepared with a growing media consisting of two parts of garden soil and one part of burnt rice husk, farmyard manure (FYM), and cocopeat (2:1:1:1 v/v) (Rashika and Karuppaiah, 2025a). Raised beds of 30 cm height were prepared and divided into 48 plots measuring 2.0 m x 2.0 m per plot. Six-month-old rooted cuttings with a uniform height were selected and transplanted on ridges at $60 \text{ cm} \times 60 \text{ cm}$ spacing (Rashika and Karuppaiah, 2025b) to ensure proper plant growth and uniformity. Initial irrigation was provided immediately following transplantation, followed by two subsequent irrigations at two-day intervals. Additional irrigations were administered as required. The plots were maintained free from weeds over the growing period by hand weeding at regular intervals. The first weeding was carried out 20 days after planting and thereafter when required.

Biometric observations were made on various growth and

physiological parameters, including plant height, stem girth, number of leaves/plant, leaf length, leaf breadth, number of cut stems/plant, number of cut stems/m², chlorophyll content (SPAD), visual scoring and vase life of cut foliage without pulsing. These observations were recorded 270 days after planting. The relative leaf chlorophyll content was estimated with a (SPAD 502) chlorophyll meter as the SPAD index. Visual quality of cut foliage was assessed based on leaf colour, texture, shape, tip, margin, and overall appearance using a 10-point hedonic scale. Ratings were categorized as Excellent (9.1–10), Very Good (8.1–9.0), Good (6.1–8.0), Acceptable (5.1–6.0), and Unacceptable (0–5.0) (Gowshika Devi and Karuppaiah, 2021). Data recorded, thus, were subjected to statistical analysis as per the procedure outlined by Panse and Sukhatme (1978) and the results were tested at 5 per cent level of significance.

Results and discussion

Effect of nutrients on growth parameters

The data in Table 1 shows that the Nano urea (N) and Mono potassium phosphate (MKP) combination positively influences the plant growth of *Dracaena reflexa* 'Song of India'. The maximum plant height (55.12 cm) and most significant stem girth (4.12 cm) were observed under the N₃ x MKP₂ (0.3% Nano urea with 0.75% Mono potassium phosphate). Conversely, the minimum values for plant height (33.76 cm) and stem diameter (1.74 cm) were noted under N₀ x MKP₀ (Control). Nano-fertilizers enhance growth due to their ultra-small size and large surface area, which improve leaf penetration and nutrient absorption (Sharma et al., 2022). Nano urea boosts enzymatic activity, photosynthate translocation, and auxin synthesis, promoting cell division and elongation for vigorous vegetative growth (Mahmoud et al., 2020; El-Shawa et al., 2022; Saikumar et al., 2022). Similar results have been reported in lettuce crop (Abdel, 2018) and Philodendron spp., (El-Shawa et al., 2022). Mono potassium phosphate (MKP) supports root and shoot development by ensuring optimal physiological functions. These results align with previous studies Sahithi et al. (2023) in marigold and (Gowtham and Karuppaiah, 2024) in Crossandra.

The number of leaves per plant (56.13) (Table 1) was maximized under the combination of N_3 x MKP₃ compared to the control (N_0 x MKP₀). The combination of 0.3% nano urea (N_3) and 0.75% mono potassium phosphate (MKP₃) leads to an increase in leaf number due to the complementary effects of nitrogen, phosphorus, and potassium. Nitrogen (N_3) enhances chlorophyll content, provides essential proteins and nucleotides necessary for leaf formation (Sharma et al., 2022) while, Potassium (MKP₃) enhances stomatal conductance,

Table 1	Effect of nutrients on	growth parameters	of Dracaena re	oflera 'Song o	of India' at 270	days after planting

Treatments	Plant height	Stem girth	Number of	Leaf	Leaf	Number of
	(cm)	(cm)	leaves/plant	length (cm)	breadth (cm)	cut stems/plant
$\overline{N_0 \times MKP_0}$	33.76	1.74	35.09	12.14	1.30	1.69
$N_0 \times MKP_1$	35.36	2.17	37.03	12.29	1.36	1.80
$N_0^0 \times MKP_2^1$	36.72	2.30	38.04	12.52	1.51	1.82
$N_0^0 \times MKP_3^2$	38.07	2.51	40.17	13.04	1.67	1.93
$N_1^0 \times MKP_0^3$	39.30	2.65	41.37	13.53	1.83	2.14
$N_1 \times MKP_1$	43.42	2.89	45.06	14.16	2.03	2.66
$N_1 \times MKP_2$	44.74	3.21	46.43	14.93	2.09	2.76
$N_1^1 \times MKP_3^2$	46.28	3.14	46.57	14.65	2.06	2.87
$N_2 \times MKP_0$	40.65	2.76	43.06	13.7	1.90	2.34
$N_2 \times MKP_1$	47.88	3.40	47.02	15.19	2.11	3.10
$N_2 \times MKP_2$	50.95	3.53	51.09	16.81	2.20	3.42
$N_2 \times MKP_3$	52.55	3.61	53.32	17.53	2.22	3.66
$N_3 \times MKP_0$	41.98	3.00	43.64	13.91	2.00	2.53
$N_3 \times MKP_1$	49.44	3.45	49.42	15.27	2.19	3.21
$N_3 \times MKP_2$	53.92	3.74	54.79	17.55	2.25	3.87
$N_3 \times MKP_3$	55.12	4.12	56.13	17.94	2.50	4.11
CD	1.33	0.14	1.31	0.35	0.08	0.11
SE(d)	0.63	0.07	0.63	0.17	0.04	0.05

CO₂ assimilation, and root water uptake, improving photosynthesis, stress tolerance, and delaying leaf senescence, which increases growth and foliage yield. Phosphorus (MKP₃) fuels ATP production, supporting rapid cell division in the shoot meristem. These results are in line with the studies of Mathew et al. (2022) in *Chrysanthemum morifolium* cv. Branfountain Purple and Sahithi et al. (2023) in marigold.

Effect of nutrients on yield parameters

The combined application of 0.3% nano urea and 0.75% mono potassium phosphate (MKP) $(N_3 \times MKP_3)$ significantly enhanced leaf morphology and stem production in *Dracaena* reflexa. The leaf length (17.94 cm) and leaf breadth (2.50 cm), along with the number of cut stems per plant (4.11) (shown in Table 1) and per square meter (11.38) (shown in Table 2), were recorded maximum under this treatment (N₂ \times MKP₃) compared to the control (N₀ \times MKP₀). Nano urea increases leaf area and biomass, while mono-potassium phosphate supports root growth, energy transfer, and stomatal function. Together, they enhance physiological processes, leading to vigorous growth, stronger tissues, and higher cut foliage yield (Salim et al., 2014; Gondwal et al., 2024). The results are in similar with, Nair et al. (2015) in leather leaf fern, Gowshika Devi and Karuppaiah (2021) in *Dracaena* reflexa 'variegata' and Kalyani et al. (2024) in Gerbera jamesonii.

Effect of nutrients on quality parameters

Regarding quality parameters such as Chlorophyll content SPAD (45.12), visual scoring (9.01), and vase life of foliage without pulsing (12.74 days) were recorded the maximum at N_3 x MKP $_3$ and the minimum under control (Table 2). The combined application of 0.3% Nano Urea and 0.75% MKP

Table 2. Effect of nutrients on yield and quality parameters of *Dracaena reflexa* 'Song of India' at 270 days after planting.

Treatments	Number of	Chlorophyll	Visual	Vase life without
	cut stems/m ²	(SPAD)	Scoring	pulsing (days)
$N_0 \times MKP_0$	4.68	25.67	5.01	7.99
$N_0 \times MKP_1$	4.98	28.74	5.18	8.97
$N_0 \times MKP_2$	5.04	30.07	6.13	9.38
$N_0 \times MKP_3$	5.34	32.09	6.23	9.55
$N_1 \times MKP_0$	5.92	32.15	6.47	9.67
$N_1 \times MKP_1$	7.36	36.18	6.89	10.49
$N_1 \times MKP_2$	7.64	37.76	7.34	10.53
$N_1 \times MKP_3$	7.94	39.52	7.46	10.78
$N_2 \times MKP_0$	6.48	33.09	6.54	9.86
$N_2 \times MKP_1$	8.58	40.54	7.58	11.17
$N_2 \times MKP_2$	9.47	42.53	8.54	11.49
$N_2 \times MKP_3$	10.13	43.26	8.61	11.56
$N_3 \times MKP_0$	7.00	33.46	6.73	10.14
$N_3 \times MKP_1$	8.89	42.17	8.14	11.38
$N_3 \times MKP_2$	10.71	43.65	8.76	12.04
$N_3 \times MKP_3$	11.38	45.12	9.01	12.74
CD	0.34	1.40	0.20	0.40
SE(d)	0.17	0.68	0.09	0.20

enhances the visual quality of *Dracaena reflexa* by improving nutrient metabolism, boosting chlorophyll synthesis, leaf pigmentation, and plant vigour (Salim *et al.*, 2014). Nano Urea promotes darker, broader leaves, while MKP supports cell integrity and leaf turgidity, preventing premature aging (Sharma et al., 2022). These findings are in accordance with Chandana and Dorajeero (2014) in *Gladiolus grandiflorus*, Ma et al. (2021) in rose, and Gowtham and Karuppaiah in crossandra (2024).

Conclusion

The combined application of 0.3% Nano urea and 0.75% Mono potassium phosphate significantly enhanced the growth, yield and quality of *Dracaena reflexa* 'Song of India'

under tropical conditions. This study highlights the effectiveness of nano-fertilizers and balanced nutrient management for sustainable and profitable cut foliage production. Future research may focus on exploring the nutrient-induced physiological and biochemical changes in enhancing foliage durability under different storage conditions.

Acknowledgment

We would like to extend our heartfelt gratitude to all individuals and institutions whose support and contributions were invaluable in completing this study.

References

- Abdel-Salam, M. 2018. Response of lettuce (*Lactuca sativa* L.) to foliar spray using nano- urea combined with mycorrhiza. *J. Soil sci. Agric. Eng.* 9: 467-472.
- APEDA. 2023. Export Statistics for Cut Foliage. *Agricultural and Processed Food Products Export Development Authority*, Ministry of Commerce & Industry, Government of India, New Delhi.
- Athulya, P.S. and Singh, D. 2021. Cultivation of *Dracaena reflexa* in different spacing pattern as an intercrop in custard apple block. *Pharma. Innov. J.* 10: 849-851.
- Bhattacharjee, S.K. 1999. Postharvest management of cut flowers, cut foliage and post production management of potted plants. *J. Ornam. Hortic.* 2:32-39.
- Chandana, K. and Dorajeerao, A.V.D. 2014. Uptake of Nitrogen and Phosphorus as influenced by graded levels of Nitrogen and Phosphorus on Gladiolus (*Gladiolus grandiflorus* L.) cv. White Prosperity in Coastal AP, India. *Plant Arch.* 14: 197-204.
- El-Shawa, G.M., Alharbi, K., AlKahtani, M., Al Husnain, L., Attia, K.A. and Abdelaal, K. 2022. Improving the quality and production of Philodendron plants using nanoparticles and humic acid. *Horticulturae*. 8: 678.
- Gilman, E.F. 1999. Fact Sheet FPS-187: *Dracaena reflexa*. Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida (IFAS), Gainesville, USA. 2 p.
- Gondwal, P., Rana, M.K., Dhankar, A., Sahil and Mohan, J. 2024. Role of nano-urea in optimizing nitrogen use efficiency, yield and quality of rice: A review. *Int. J. Res. Agron.* 7: 182-187.
- Gowshika Devi, M. and Karuppaiah, P. 2021. Effect of media and foliar concoction on growth, yield and quality of Dracaena (*Dracaena reflexa* 'Variegata') as cut foliage. *Ann. Plant. Soil Res.* 23: 304-309.
- Gowtham, S. and Karuppaiah, P. 2024. Effect of different levels of nitrogen in combination with nano urea on growth and yield of crossandra (*Crossandra infundibuliformis* L.) cv. Lakshmi. *Ann. Plant. Soil Res.* 26: 250-255.
- Herath, H. E., Krishnarajah, S.A. and Damunupola, J.W. 2013. Effect of two plant growth hormones and potting media on an ornamental foliage plant, *Ophiopogon* sp. *Int. Res. J. Biol.*

- Sci. 2: 11-17.
- Kalyani, T.G., Reshmi, C.R., Rafeekher, M., Priya Kumari, I. and Leno, N. 2024. Effect of combined application of nano urea and custom blended thermochemical organic fertilizer for growth and yield of Gerbera (*Gerbera jamesonii* Bolus). *Int. J. Plant Soil Sci.* 36: 230-239.
- Ma, Q., Wang, X., Yuan, W., Tang, H. and Luan, M. 2021. The optimal concentration of KH₂PO₄ enhances nutrient uptake and flower production in rose plants via enhanced root growth. *Agric*. 11: 1210.
- Mahmoud, A.W.M. and Swaefy, H.M. 2020. Comparison between commercial and nano NPK in presence of nano zeolite on sage plant yield and its components under water stress. *Agric*. 66: 24-39.
- Mathew, H. V., Topno, S. E. and Kerketta, A. 2022. Effect of fertigation intervals on plant growth and flower yield of Multiflora Chrysanthemum (*Chrysanthemum morifolium*) ev. Branfountain Purple. *Int. J. Plant. Soil Sci.* 34: 1305-1312.
- Meghana, B.S., Akshya, A., Kumar, A.P., Barath, S. and Reddy, P.S.K. 2023. Chapter-12 Advances in production technology and Importance of Cut Greens and Fillers. *Trends in Horticulture*. 191p.
- Nair, S.A., Sangama, H.B. and Panneerselvam, P. 2015. Influence of substrates and nutrient levels on production and quality of cut foliage in leather leaf ferns (*Rumohra adiantiformis*). Soc. Plant Res. 28: 20-26.
- Panse, V.G. and Sukhatme, P.V. 1978. Statistical Methods for Agricultural Works II. Edn. *ICAR*, New Delhi, India.
- Rashika, R. and Karuppaiah, P. 2025 a. Evaluation of eco-friendly substrates for sustainable cultivation of *Dracaena reflexa* cv. Song of India cut foliage. *J. Appl Hortic*. 27: 221-224.
- Rashika, R. and Karuppaiah, P. 2025 b. Evaluation of *Dracaena* reflexa 'Song of India' for growth and quality attributes under different shade and spacing levels. Agric. Res. J. 62: 110-116.
- Rawat, J., Pandey, N. and Saxena, J. 2022. Role of potassium in plant photosynthesis, transport, growth and yield. Role of potassium in abiotic stress, *Springer*, Singapore. pp 1-14.
- Sahithi, B., Kaladhar Babu, K., Prasanth, P., Lakshminarayana, D. and Goutham, P. 2023. Studies on effect of nano urea and nano dap alone and in combination with different levels of nitrogen and phosphorus on growth and yield of marigold (*Tagetes erecta* L.) cv. superball. *Pharma Innov. J.*12: 901-906.
- Saikumar, M., Saravana, P.M., Murugan, G., Sudhagar, R., Vikramsai, M. and Maheswarareddy, B. 2022. Evaluation of nano urea on growth and yield attributes of Rice (*Oryza Sativa* L.). Chem. Sci. Rev. Lett. 11: 211-214.
- Salim, B.B.M., Abd El-Gawad, H.G. and Abou El-Yazied, A. 2014. Effect of foliar spray of different potassium sources on growth, yield and mineral composition of Potato (*Solanum tuberosum* L.). *Middle East J. Appl. Sci.* 4: 1197-1204.
- Sharma, S.K., Sharma, P.K., Mandeewal, R.L., Sharma, V., Chaudhary, R., Pandey, R. and Gupta, S. 2022. Effect of foliar application of nano-urea under different nitrogen levels on growth and nutrient content of pearl millet (*Pennisetum glaucum* L.). *Int. J. Plant. Soil Sci.* 34: 149-155.
- Sowmya, D. and Harisha, N. (2024). Growth and export of

floriculture in India: a review. *Int. J. Agric. Rural Econ. Res.* 12: 1-5.

Verma, K.K., Song, X.P., Degu, H.D., Guo, D.J., Joshi, A., Huang, H.R., Xu, L., Singh, M., Huang, D.L., Rajput, V.D. and Li,

Y.R. 2023. Recent advances in nitrogen and nano-nitrogen fertilizers for sustainable crop production: a minireview. *Chem. Biol Technol. Agric.* 10: 111.