

Short communication

Inheritance of corolla shape and fruit shape at blossom end in chilli (*Capsicum annuum* L.)

Mithun Vasudev¹, Asish I. Edakkalathur^{2*}, Anagha B¹., Jiji Joseph¹, Haseena Bhaskar³ and Deepthy Antony P.⁴

Received on 23 April 2025; received in revised form 11 June 2025, accepted 27 June 2025.

Abstract

Fruit characteristics are important in chilli (*Capsicum annuum* L.) as it decides the market preference of the produce. Inheritance of the qualitative traits viz., corolla shape and fruit shape at blossom end, were studied in parental, F_1 and F_2 generationsof two selected chilli hybrids viz., Anugraha x KAU 445 and KAU 451 x KAU 445. Campanulate shaped corolla was dominant over rotate, and blunt fruit apex was dominant over pointed apex. Both these traits segregated in 9:7 ratio in F_2 generation revealing the complementary gene interaction involving two genes.

Keywords: Capsicum, Complementary gene interaction, Dominance, F, generation

Chilli (Capsicum annuum L.) is an important vegetable as well as spice crop grown in tropical and sub-tropical regions. It displays significant diversity and vast variability (Walsh and Hoot, 2001; Adetula and Olakojo, 2006; Bozokalfa et al., 2009). Huge diversity in this crop had often confused the taxonomists in the past. The diversity is prominent in the case of fruit size, shape, colour, and pungency. These differences are important in deciding the market preferences, and hence commercially significant. Thus, understanding the genetic diversity and phenotypic variability available in the germplasm and studying the genetics of fruit characteristics are important for chilli improvement (Thul et al., 2009). In chilli, corolla is commonly rotate or rarely campanulate shaped, with variation in colours (Walsh and Hoot, 2001). Fruit length ranges from 2 to 20 cm, with thin, long to conical, and blocky shapes (Joshi et al., 2020). Blossom end of fruit may be pointed, blunt or sunken (IPGRI, 1995). This communication discusses the inheritance of corolla shape and fruit shape at blossom end in chilli using parental, F, and F, generations.

The experiment was conducted at Kerala Agricultural University, Vellanikkara, Thrissur, located at 10°32'46" N latitude and 76°16'44" E longitude, 26 meters above mean sea level. Materials used in the study included one released variety Anugraha, two germplasm lines *viz.*, KAU 445 and

KAU 451, their F_1 s and F_2 generations (Table 1, 2 and 3). All the parental lines, belonging to C. annuum were made homozygous by repeated self-pollination for five generations. Parental lines and F_1 s were raised during July, 2023to January, 2024 in Randomized Block Design with four replications and observations were recorded from five plants from each replication. Individual plants in F_1 generation were ensured self-pollination to raise F_2 generation. F_2 s of two

Table 1. Alternate phenotypes of parental lines for corolla shape and fruit shape at blossom end

Sl. Qualitative character		Alternate	Parents	
No.		phenotype		
1	Corolla shape	Campanulate	Anugraha, KAU 451	
		Rotate	KAU 445	
2	Fruit shape at blossom end	Pointed	Anugraha, KAU 451	
		Blunt	KAU 445	

Table 2. Phenotypes of F₁ generation for corolla shape and fruit shape at blossom end

Sl.	Qualitative	F ₁ genotype	F ₁ phenotype
No.	character		•
1	Corolla shape	Anugraha x KAU 445	Campanulate
		KAU 445 x Anugraha	
		KAU 445 x KAU 451	
		KAU 451 x KAU 445	
2	Fruit shape at	Anugraha x KAU 445	Blunt
	blossom end	KAU 445 x Anugraha	
		KAU 445 x KAU 451	
		KAU 451 x KAU 445	

^{*} Author for Correspondences: Phone : 9497407943; Email: asish.ei@kau.in

¹Dept. of Plant Breeding and Genetics, College of Agriculture, Kerala Agricultural University, Vellanikkara 680656, Kerala, India

² Cashew Research Station, Madakkathara, Kerala Agricultural University, Vellanikkara 680 656, Kerala, India

³ Dept. of Entomology, College of Agriculture, Kerala Agricultural University, Vellanikkara 680656, Kerala, India

⁴ Rice Research Station, Kerala Agricultural University, Vyttila 682 028, Kerala, India

Table 3. Inheritance pattern of corolla shape and fruit shape at blossom end in selected F₂(Anugraha x KAU 445 and KAU 451 x KAU 445) generations

Sl. No.	Qualitative character	F ₂ population of genotype	Phenotypes	× ² value	\times^2_{table} value $(1, 0.05)$
1	Corolla shape	Anugraha x KAU 445	60 Campanulate; 48 Rotate	0.88	3.84
		KAU 451 x KAU 445	49 Campanulate; 41 rotate	0.64	3.84
2	Fruit shape at	Anugraha x KAU 445	46 Blunt;40 Pointed	0.61	3.84
	blossom end	KAU 451 x KAU 445	38 Blunt;25 Pointed	0.52	3.84

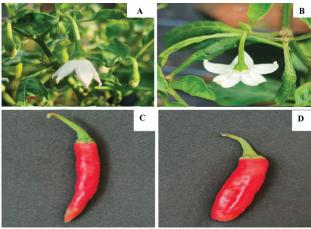


Figure 1. Variability in corolla shape and shape of fruit blossom end in F₂ plants of KAU 451 x KAU 445 **A**-Campanulate corolla **B**-Rotate corolla **C**-Pointed blossom end of fruit **D**-Blunt blossom end of fruit

selected crosses (Anugraha x KAU 445 and KAU 451 x KAU 445) were raised during March to August, 2024. Corolla shape and fruit shape at blossom end were recorded from 20 plants among parents and $F_1 s$. Among F_2 generation of Anugraha x KAU 445, corolla shape and fruit shape at blossom end were recorded from 108 and 86 plants, respectively. With respect to F_2 generation of KAU 451 x KAU 445, observations were recorded from 90 and 63 plants, respectivelyfor corolla shape and fruit shape at blossom end. The segregation pattern in F_2 generation was analysed using the chi-square (χ^2) test to assess the conformity of observed segregation ratio with expected complementary epistasis ratio.

The corolla shape and fruit shape at blossom end in the parental lines and their F₁s are presented in Table 1 and 2, respectively. Campanulate corolla was dominant over rotate shaped and blunt fruit blossom end was dominant over pointed apex. F₂ generation segregated in 9:7 ratio for both traits revealing complementary epistasis involving two genes (Table 3). Campanulate corolla and blunt fruit blossom end would be expressed when dominant alleles of both genes were present together. Alternate phenotypes i.e., rotate corolla and pointed fruit blossom end would be expressed when alleles of either one or both genes were present in recessive condition.

Deshpande (1933) reported monogenetic inheritance of fruit shape at blossom end in chilli. Bal et al. (1995) reported 1

pointed: 2 mixed: 1 blunt segregation ratio in F_2 generation indicating incomplete dominance of two alleles of a single gene for the above trait. Srivastava *et al.* (2019) reported duplicate gene interaction for the same trait with 15 pointed: 1 blunt ratio. These findings highlight the genetic complexity and varying inheritance patterns of fruit shape at the blossom end in chilli due to differences in allelic expression pattern and varying gene operating mechanisms according to differences in genotypes studied.

Present study revealed that corolla shape and fruit shape at blossom end in chilli are controlled by two genes acting in complementary manner. Being oligogenic traits, selection for the desired phenotype in these traits is comparatively easy.

References

Adetula, A. O. and Olakojo. S. A. 2006. Genetic characterization and evaluation of some pepper accessions *Capsicum frutescens* (L.): The Nigerian 'Shomobo' collections. *Am.-Eurasian J. Agric. Environ. Sci.* 1 (3): 273-281.

Bal, S. S., Singh, J., and Dhanju, K. C. 1995. Genetics of resistance to mosaic and leaf curl viruses in chilli (*Capsicum annuum* L.). *Indian J. Virol.* 11(1): 77-79.

Bozokalfa, M. K., Esiyok, D. and Turhan, K.. 2009. Patterns of phenotypic variation in germplasm collection of pepper (*Capsicum annuum* L.) from Turkey. *Span. J. Agric. Res.* 7(1): 83-95.

Deshpande, R. B. 1933. Studies in Indian chillies in the inheritance of some characters in *Capsicum annuum* L. *Indian J. Agric. Sci.* 3(1): 219-300.

IPGRI [International Plant Genetic Resources Institute]. 1995. Descriptors for Capsicum (Capsicum spp.). International Plant Genetic Resources Institute: Rome, Italy: 49p.

Joshi, U., Rana, D.K., Singh, V., and Bhatt, R. 2020. Morphological characterization of chilli (*Capsicum annum L.*) genotypes. *Appl. Innov. Res.* 2: 231-236.

Srivastava, A., Sharma, V.R., Dishri, M., Dikshit, A., Mangal, M., and Kalia, P. 2019. Inheritance of fruit attributes in chilli pepper. *Indian J. Hortic*. 76(1): 86-93.

Thul, S.T., Lal, R.K., Shasany, A.K., Darokar, M.P., Gupta, A.K., Gupta, M.M., Verma, R.K., and Khanuja, S.P.S. 2009. Estimation of phenotypic divergence in a collection of *Capsicum* species for yield-related traits. *Euphytica* 168: 189-196.

Walsh, B.M. and Hoot, S.B. 2001. Phylogenetic relationships of Capsicum (Solanaceae) using DNA sequences from two noncoding regions: the chloroplast atpB-rbcL spacer region and nuclear waxy introns. Int. J. Plant Sci. 162(6): 1409-1418.