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Introduction

According to the Ministry of Finance (2023),  the
expanding Indian economy has gained global
prominence over the past decade. The Ministry of
Agriculture & Farmers Welfare (2021) and the
Ministry of Statistics and Programme
Implementation, report that agriculture contributes
17% to the national GDP, playing a vital role in the
economy. Pattanayak and Mallick (2017) indicate
that while approximately 70% of Indians are
farmers, the agricultural sector faces challenges
from population growth, urbanization, climate
change, and resource depletion. Shakoor and Ullah
(2024) observe that many farmers still rely on
traditional methods, outdated irrigation, excessive
fertilizer use, and struggle with unpredictable
weather, limiting productivity. Key factors like soil
quality, moisture, weather, and disease management
are essential for a successful harvest (Magdoff,
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2001). Neglecting these aspects can lead to
inefficient resource use and unhealthy crops, with
excessive fertilizers and chemicals harming soil
composition (Kurnjawati et al., 2023).

To address these issues, introducing smart farming
technologies is critical for informed decision-
making. Soil temperature monitoring is crucial for
agriculture, impacting plant growth, seed
germination, nitrification, soil moisture, and nutrient
availability ( Galezewski  et al., 2021). Astija (2020)
shows that soil pH, ranging from 0 (acidic) to 14
(alkaline), is measured with sensors to assess
nutrient levels and detect unwanted chemicals,
noting that tomato plants develop best when pH is
near 7. Neina (2019) affirms that pH monitoring
helps maintain this level through fertilizer
application. Navyashree (2023) emphasizes the role
of water in nutrient transport within plants; adequate
water circulation supports plant rigidity and health,
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even with evapotranspiration. Soil moisture
properties, such as field capacity, Permanent Wilting
Point (PWP), and available water, vary by soil type
(Liu and Ma, 2024). Electrical conductivity, a
measure of soil salt content, serves as an indicator
of nutrient and water availability, influencing crop
suitability (Blaschek et al., 2019). High soil salinity
can hinder plant growth (Gondek et al., 2020),
making salt level monitoring essential for crop
selection, irrigation, and soil management.
Monitoring NPK levels is also vital as these
macronutrients are required in varying amounts
across crops (Isreal and Yonas, 2021).
Micronutrients are needed in smaller quantities,
usually grams per hectare, and regular NPK checks
ensure proper nutrient supply for optimal growth
and yield (Feyissa et al., 2022).

This paper introduces smart fertigation system for
control through a User Interface (UI), enabling data
aggregation, visualization, and analysis in the cloud.
Data analytics employ Machine Learning (ML) and
Deep Learning (DL) techniques, focusing on models
such as Random Forest (RF), Convolutional Neural
Network (CNN), Recurrent Neural Network (RNN),
and Long Short-Term Memory (LSTM). The digital
twin integrates automated irrigation and fertigation,
thereby minimising manual labour, promoting
optimal fertiliser and water use.

Materials and Methods

Identifying the Water Requirements of Crop
Plants of the tomato variety  “Vellayani Vijay” were
raised in grow trays in a naturally ventilated green
house for 30 days.  During this period, the relative
humidity spanned between 71% and 99% and the
mean temperature ranged from 24°C to 30°C.
Uniformly sized seedlings were then transplanted
to separate earthen pots having a top diameter of 35
cm and then filled with soil, well decomposed
farmyard manure, and sand in the proportion 2:1:1.
Vermicompost was also added to enhance the soil
fertility and water retention capabilities, and kept
in a rain shelter of 250 square meter area.  Four

pots were maintained equidistantly with a gap of
10 centimeters from the edge of one pot to the edge
of the next one.  The plants were irrigated and the
soil moisture in each pot was maintained at 70-80%,
60-70%, 50-60%, and 40-50% respectively. This
was achieved using the gravimetric method, where
the soil moisture in the pots was measured
periodically and the water was added to reach and
maintain the desired percentage.  In the gravimetric
method, the weight of the pot, dry soil, and wet soil
are measured and the moisture per cent of soil in
each pot is computed using the formula:

   — (1)
Eighty per cent (80%) of soil moisture, seemed to
be the maximum water-holding capacity of the soil
in each pot.  After this percentage, the water seeped
out of the pot. Sensors were also used to measure
the soil moisture. The resulting values were
compared to the computed soil moisture values to
confirm accuracy.  This approach ensured precise
control over the soil moisture levels, facilitating a
comprehensive study of the effects of varied water
availability on plant growth. Moisture levels were
computed at the edge server, and the controller
within the rain shelter activated the actuators
accordingly. Plant growth parameters pertaining to
plant height and the number of leaves from each
pot were taken manually at fifteen-day intervals
until the 70th day.The total weight of fruits from each
plant was also computed.

Assessment of pH and EC in the soil
The determination of nitrogen (N), phosphorus (P),
and potassium (K) values in soil samples involves
a series of meticulous steps, ensuring accuracy and
precision in the results. Five zones within the rain
shelter are chosen to ensure a representative
sampling. Based on the soil sampling methods
explained by Dawson and Knowles, (2018), soil
samples were collected from varying depths, since
nutrient concentration can change with depth. The
samples are air-dried to eliminate moisture content,
and then sieved to remove coarse materials like
stones, roots, and leaves, ensuring uniformity for
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accurate measurements. Ten grams of finely sieved
soil are weighed, and 25 milliliters of distilled water
is added. This soil-to-water ratio facilitates nutrient
and parameter extraction from the soil. The soil-
water mixture is placed in a shaker to create a
homogeneous solution and enhance the extraction
of soluble nutrients.

The suspension is stirred at regular 30-minute
intervals. This regular agitation ensures a consistent
extraction of nutrients from the soil particles into
the water. Once the soil particles have adequately
settled after the final stirring, the electrical
conductivity of the soil is measured using an EC
meter. This measurement displaysthe salinity or total
dissolved salts in the soil.A calibrated pH meter is
dipped into the soilsuspension to measure the pH
value. Soil pH is an indicator of soil acidity or
alkalinity and can influence the availability of
nutrients to plants.

Computation of Soil N,P,K values
Colorimetric Analysis was performed to ascertain
the availability of phosphorous (P). Phosphorus was
extracted from the soil using an appropriate
extraction solution. The extracted P reacts with a
reagent to produce a colored compound. The
intensity of this color is directly proportional to the
concentration of phosphorus in the sample. A
colorimeter or spectrophotometer is used to measure
the intensity of the developed color.  The phosphorus
concentration in the sample is determined by
comparing the reading with a calibration curve
created from known phosphorus standards
(Ekukinam et al., 2014).

Potassium was extracted from the soil using the
Flame Photometry method with a neutral 1N
ammonium acetate solution. This solution
effectively extracts exchangeable potassium ions
from the soil. The extracted solution is introduced
into the flame of a photometer, where potassium
vaporizes and emits light at a characteristic
wavelength. The photometer measures this light
intensity, and the potassium concentration is

determined by comparing it to a standard calibration
curve.

Walkley and Black Method was used to assess the
availability of Organic Carbon in the soil. This
method oxidizes, soil organic carbon using a mixture
of potassium dichromate (K2 Cr2 O7 ) and sulfuric
acid, releasing carbon dioxide (CO2) proportional
to the organic carbon content.  After the oxidation
process, the excess chromic acid is titrated using
ferrous ammonium sulphate to determine the
amount of chromic acid reduced. This gives the
amount of carbon present in the soil. Organic carbon
percentage is then calculated based on the titration
values.

The Kjeldahl Method is used to compute nitrogen
(N) content in the soil. Soil is digested with
concentrated sulphuric acid, which converts all
nitrogen forms to ammonium (NH4

+). The digested
solution is then distilled with sodium hydroxide,
releasing ammonia. The ammonia is trapped in a
boric acid solution and titrated with a standard acid
solution. Nitrogen content is calculated based on
the titration values (Jackson, 1973).

Setting the field for automated irrigation and
fertigation
‘Vellayani Vijay’ tomato plants were grown and
transplanted into earthen pots with a top
circumference of 35 cm. The pots were placed 10
cm apart in an equidistant arrangement. Each plant
received 1.2 liters of water on alternate days through
drip irrigation to sustain soil moisture within the
50–60% range. To maintain humidity between 71%
and 99% within the shelter, mist irrigation was
applied.

Installation of sensors for data collection
Pamungkas et al. (2023) has explained the
importance and effectivity of using soil sensors to
measure soil nutrients and moisture.  Through their
study, Le et al. (2023) examines FDR-based sensors
to monitor soil moisture, nutrient levels, and their
influence on crop health and find it a better option.
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Prabu et al., 2023 discusses the integration of
corrosion-resistant sensors for soil nutrient
monitoring in varying soil conditions.  Keeping
these factors in mind, for a more nuanced
understanding of soil nitrogen, phosphorous, and
potassium, RS485 wireless sensors which adopt the
Frequency Domain Reflectometry (FDR)
measurement method were inserted 4 inches deep
into the soil.  This sensor has high-density epoxy
resin filled between the probe and body to ensure
high waterproofing. The probes are made of
austenitic 316 stainless steel to make it salt-alkali
corrosion resistant, rust-proof, and electrolytic
resistant. The sensor has a highly sensitive chip that
consumes low power, to provide stable signals.

Figure 1 depicts multiple sensors with independent
identification numbers attached in a bus network
over a long distance, and these multiple sensors use
a data logger and a single port (RS232/serial). The
main sensors used in this device are the 7 in 1 Soil
Integrated Sensor (1) for monitoring nitrogen,
phosphorous, and potassium (NPK), electrical
conductivity, pH, and moisture; the Water flow
sensor (2) that gives the volume of water being used

for irrigation at any given instant, and atmospheric
parameter sensors (3) to measure temperature and
humidity with RS485 module. The real-time data
collected from the point of transplanting the
seedlings are uploaded to a cloud-based data base
at 5-minute intervals 24/7, for a period of ninety
days. The sensors are connected to the controller,
an edge device.

Workflow in the automation process
The processes involved in this automation are
depicted in Figure 2. The sensors collect data and
store them in their own memory space until
requested by the controller. The data collected by
one of the sensors is in the form of electrical
conductivity and then gets converted to numerical
values. Another sensor senses the passage of water
through the pipes in the form of frequency
pulses.This is then used by the controller to compute
the volume of water delivered. Temperature and
humidity sensors collect the related data and push
it to the controller through the I2T (IsquareT)
communication protocol. The controller makes data
requests to the sensors at regular intervals and
collects only valid data.  Basic levels of

Figure 1: Sensor-Microcontroller connectivity (Edge device)
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computations, data validation, and pre-processing
are done within the controller.  Most of the actuator
activations are done based on decisions at the edge
level. Only specific valid data are pushed to the
database server in the cloud. A combination of deep
learning techniques is applied to the data to obtain
model stacks and recommendations. Frequent
analytics at regular intervals and dynamic
corrections are made to the models until the best
values for optimum irrigation and fertigation
recommendation are obtained for crops in a
particular soil and field type. Based on the requests
made by the users, the results from the models are
implemented through actuators that are under the
supervision of the controllers.

Implementation of IoT and sensors in the field
As depicted in Fig. 3 multiple sensors with
independent identification numbers are attached in
a bus network over along distance, and these
multiple sensors use a single port (RS232/serial),

and data logger. The RS485 sensors transmit signals
over twisted cable/dual lines and follow the
MODBUS master/slave protocol of communication,
wherein the master node initiates the
communication. All nodes connected will receive
the call but only the slave node that is meant to will
respond. The sensor layer in the Edge device
communicates locally with the Modbus server in
Gateway in the networking layer via Modbus
protocol. It then pushes the data to the cloud server
and communicates through the MQTT pubsub-
OASIS protocol. The data server in the processing
layer collects and stores the data being transmitted.
Rule engines, controls, decision-making, and
visualization details are stored in the application
server.The database server and application server
continuously communicate with each other. The user
publishes a notification related to the information
requested. The MQTT server puts out this request
in the gateway through the MQTT client. When this
information is available with the MQTT server in

Figure 2. Process Flow Diagram of IoT Fertigation System
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the cloud, the user is notified and the actuators are
activated as per the rules set in the rule engine.
Codes have been written using the Python
programming language to perform data analytics
on the real-time data that is pushed into the cloud
server. AI-based analyses are performed on the real-
time data and a model isgenerated, based on which
the quantity of water and nutrients is determined
for crops in a field at any given location. Data is
transmitted from the edge server to the cloud
through wireless network systems. The power
supply required for the continuous monitoring of
the soil parameters by the sensors is provided by
1KVA sonic power solar PCU with MPPT, 260 W
solar panel and 200AH tubular batteries.

Data Processing and Analytics
Random Forest (RF): A Random Forest model is an
ensemble machine-learning technique that
constructs multiple decision trees during training
and outputs an average prediction of individual trees
for regression tasks or a mode (majority vote) for
classification tasks. By Building several trees and

averaging results, the model reduces the risk of over
fitting and improves generalization. They are
especially useful for small databases because they
can capture complex relationships without requiring
a massive amount of data, and they help prevent
over fitting which often occurs with limited data
sets (Simon et al., 2023).

Convoluted Neural Networks (CNN): CNNs can be
adapted for time series data analysis by treating
sequences as one-dimensional “images”, capturing
local temporal dependencies through convolution
operations.  This approach benefits from the ability
of CNN to automatically and adaptively learn spatial
hierarchies of features from the data.  However, for
very short sequences in small databases, the model
may overfit, and CNN might require more data
preprocessing compared to traditional time series
methods (Subeesh and Mehta, 2021)

Recurrent Neural Network (RNN): These are
inherently designed to handle sequential data,
capturing long-term dependencies and temporal

Figure 3. Process Flow Diagram of IoT Fertigation System
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dynamics, thereby making them more suited for
time series than CNN.  They are optimal for tasks
where past information significantly influences
future predictions, such as stock price prediction.
However, RNNs can be computationally intensive
and might suffer from long training times with large
databases, and are prone to issues like vanishing
gradients, which can make the training of deep
RNNs challenging (Sampath and Sumithira, 2022;
Hewamalage et al., 2021).

Long Short-Term Memory (LSTM): This is a type
of RNN designed to capture long-term dependencies
and avoid the vanishing gradient problem which is
typical of the RNN.  While CNNs specialize in
spatial hierarchies and are ideal image data, LSTMs
excel in understanding sequences and temporal
hierarchies, making them more suited for time series
and natural language processing tasks.  Compared
to basic RNNs, LSTMs can remember patterns over
longer sequences, offering better performance for
tasks with extended temporal patterns (van Houdt
et al., 2020).  However, LSTMs can be more
computationally intensive than RNNs and CNNs.

The evaluation metrics are taken as Mean Square
Error (MSE), Root Mean Squared Error (RMSE),
R-squared (R2), and MSE for Mean Squared Error.
This evaluates the accuracy of a regression model
by computing the average  of the squared between
actual  and predicted values. In formula terms, for
data points, if yi denotes the real value and is its
corresponding prediction, the MSE is given by:

Essentially, it quantifies how close a model's
predictions are to the actual outcomes, with lower
values signifying a better fit.

RMSE:RMSE, which stands for Root Mean Squared
Error, is a widely used metricin regression analysis
that measures the model's prediction accuracy.
Essentially, it represents the standard deviation of
the residuals (or prediction errors). By calculating

the square root of the Mean Squared Error (MSE),
it quantifies how much, on average, the model
predictions deviate from the actual values.
Mathematically, for n data points, where yi is the
actual value and    i‚ is the predicted value for the
ith observation, RMSE is computed as:

A lower RMSE value indicates a better fit of the
model to the data, as it means the errors between
the predicted and actual values are, on average,
smaller. Conversely, a higher RMSE suggests larger
errors and potentially a less accurate model.

Mean Absolute Error (MAE) is a metric used in
regression analysis to evaluate a model’s accuracy
by computing the average of the absolute differences
between the actual and predicted values. Its primary
purpose is to provide a straight forward and easily
interpretable measure of prediction error without
squaring, emphasizing all errors uniformly.
However, a disadvantage of MAE is that it does not
highlight large errors, as it treats all errors equally,
potentially missing significant outliers or deviations.
The formula for Mean Absolute Error is given by:

where:
n is the total number of observations
yi is the actual value for the ith observation
    is the predicted value for the ith observation
             represents the absolute difference between
the actual and predicted values for each observation

R-Squared: R2 is a statistical measure that represents
the proportion of the variance for the dependent
variable that is explained by independent variables
in a regression model. It provide same as ure of how
well the observed outcomes are replicated by the
model R2 provides a measure of the strength of the
relationship between the model and the response
variable (Chicco et al., 2021).  It offers an indication
of the "goodness of fit" of the model.  An R2 value
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of 1 indicates that the regression predictions
perfectly fit the data, while a value of 0 indicates
no fit.The formula for R2 is as given below:

Where:
SSres is the sum of squares of residuals (the
differences between observed and predicted values
SStot is the total sum of squares (the variance of the
dependent variable) Since accuracy increases when
the R2 value gets closer to1, the results obtained from
each of the models were compared and the best one
was selected, based on the R2 values

Results and Discussion

In Figure 4, the x-axis represents soil moisture levels
in pots, measured as a percentage (%), while the y-
axis indicates plant height in inches and the number
of leaves. The graph compares soil moisture ranges
of 40-50%, 50-60%, 60-70%, and 70-80%, with data
collected from four pots (Pot 1, Pot 2, Pot 3, Pot 4).
Each moisture range displays corresponding plant
height and leaf count.

Observations reveal that maintaining soil moisture
at 70-80% causes water seepage from the pots,
requiring irrigation only once every two days. At
60-70% soil moisture, alternate-day irrigation
suffices without seepage. Similarly, 50-60% soil

moisture also supports alternate-day irrigation, with
a volume of 1.2 litres per pot. When the pH value is
maintained between 6.3 to 7.0, in moisture ranges
of 70-80% and 60-70%, plants achieved similar
heights, whereas, at 50-60% and 40-50%, the height
of the plant decreases. The number of leaves in the
plants were inversely proportional to the decrease
in soil moisture. Although leaf numbers were
maximum at 40-50% soil moisture, it exhibited
unhealthy characteristics, bore fruits of the lowest
weight, and raised soil pH to 8.0.

Tomato plants yielded the heaviest fruits at 60-70%
soil moisture, followed by plants at 50-60%. A table
accompanying the graph details the total fruit weight
harvested from each plant across different moisture
levels, with measurements provided in milligrams
(mg).

This study aims to identify the optimal conditions
for plant growth and yield through controlled
irrigation. Soil pH is maintained between 6.3 and
7.0 to protect the root system, ensuring effective
uptake of essential nutrients.  In acidic soils, nutrient
absorption slows, impeding tomato plant growth
(Wang et al., 2000). Conversely, when pH shifts to
the alkaline range, the soil becomes more
susceptible to disease (Ibrahim et al., 2020).
Therefore, maintaining a near-neutral pH is
essential. The subsequent experiments focus on
maintaining 50-60% soil moisture, which promotes
efficient water use, keeps pH within the ideal range,
and supports a healthy harvest.

Somasundaram (2018), discusses the role of CSV
format for structured data ingestion on cloud
analytics platforms.  Hence, in the subsequent
experiments, data is stored as a comma-separated
values (CSV) file on cloud platforms. Collected at
30-minute intervals, the data is concatenated and
integrated at the end of each day to ensure a
continuous dataset (Orter et al., 2019) and to
preserve the temporal context (Koh et al., 2021).
Preprocessing is applied to this data to enhance
result accuracy (Maharana et al., 2022) beforeFigure 4. Computing soil moisture requirement

Geetha Radhakrishnan, Roy Stephen and V. S. Santhosh Mithra



280

analytical procedures are conducted.

Outliers are managed using interquartile range
analysis, which captures the middle 50% of the
dataset, making it resistant to extreme values (Vinutha
et al., 2018). Missing values, often due to machine
failure, maintenance, or human error, are filled using
interpolation to prevent biased interpretations (Noor
et al., 2013). The data is transformed through
normalization and standardization.  The final dataset,
containing N, P, and K values, can exhibit linear or
non-linear patterns (Whetton et al., 2021). Soil N, P,
and K levels are influenced by various factors with
non-linear interdependencies, resulting in a complex
time-series dataset (Qi et al., 2017). This refined
dataset is subsequently used for testing and training
with models such as Random Forest (RF),
Convolutional Neural Networks (CNN), Recurrent
Neural Networks (RNN), and Long Short-Term
Memory (LSTM).

After training and testing, the evaluation of nitrogen
predictions in Table 1 shows that the Random Forest
(RF) model achieves the highest R² value (0.99) and
the lowest Mean Absolute Error (MAE, 0.16) and
Root Mean Square Error (RMSE, 0.29), indicating
superior performance in terms of error metrics. In
contrast, both CNN and RNN models display higher
error rates, each with R² values of 0.96. The LSTM
model shows the highest Mean Squared Error (MSE,
0.97) and RMSE (0.99), suggesting it may be less
suitable for nitrogen prediction in this context.

Table 2 presents potassium evaluation results, where
RF again demonstrates the lowest MAE (1.09) and
RMSE (2.05) with a high R² of 0.97, making it the
most accurate model for potassium prediction. The
CNN model yields significantly higher errors across
all metrics, with the lowest R² (0.88), indicating
suboptimal performance. RNN and LSTM models,
while showing elevated error values, maintain
higher R² values of 0.94 and 0.95, respectively.

In Table 3, RF outperforms other models for
Phosphorus prediction, with the lowest MSE (0.13),

MAE (0.26), and RMSE (0.36), along with the
highest R² (0.99). While CNN and RNN models
show moderate performance with higher errors and
R² values of 0.99 and 0.97, respectively, the LSTM
model again exhibits the highest errors among all
models.

Although the RF model is generally preferred for

Table1. Evaluation metrics for nitrogen
Model MSE MAE RMSE R2

RF 0.71 0.16 0.29 0.99
CNN 0.69 0.70 0.83 0.96
RNN 0.66 0.62 0.82 0.95
LSTM 0.97 0.64 0.99 0.95

Table 2. Evaluation metrics for potassium
Model MSE MAE RMSE R2

RF 4.21 1.09 2.05 0.97
CNN 18.71 3.04 4.32 0.88
RNN 7.27 1.88 2.70 0.94
LSTM 7.84 2.32 2.80 0.95

Table 3. Evaluation metrics for phosphorous
Model MSE MAE RMSE R2

RF 0.13 0.26 0.36 0.99
CNN 1.34 0.92 0.96 0.99
RNN 1.03 0.77 1.01 0.97
LSTM 1.44 0.94 1.2 0.97

Table 4. Evaluation metrics for nitrogen
Model MSE MAE RMSE R2

LSTM 0.20 0.20 0.44 0.99

Table 5. Evaluation metrics for potassium
Model MSE MAE RMSE R2

LSTM 4.87 1.22 2.20 0.96

Table 6. Evaluation metrics for phosphorous
Model MSE MAE RMSE R2

LSTM 0.41 0.38 0.64 0.99
AH : Ampere Hour; AI: Artificial Intelligence;  CSV:Comma Separated
Values; CNN: Convoluted Neural Network; DL: Deep Learning; EC:
Electrical Conductivity; FDR: Frequency Domain Reflectometry;
GDP: Gross Domestic Product IoT: Internet of Things; KVA : Kilo
Volt Ampere; LSTM: Long Short-Term Memory; MAE: Mean Absolute
Error; ML: Machine Language; MODBUS: MODular data BUS;
MPPT: Maximum Power Point Tracking; MQTT: Message Queuing
Telemetry Transport; MSE: Mean Square Error, NPK : Nitrogen,
Phosphorous, Potassium; PCUpH: Power Conditioning Unit potential
of Hydrogen ; PWP: Permanent Wilting Point; RF: Random Forest;
RMSE: Root Mean Square Error ; RNN: Recurrent Neural Network;
R2 : R Squared; UI: User Interface; W: Watt
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non-time-series data, it can be adapted for one-step
forecasting in time-series contexts when datasets
are small. RF provides R² values of 0.99 for
nitrogen, 0.97 for potassium, and 0.99 for
phosphorus, indicating robust predictions for these
nutrients. However, as database size grows, RF may
risk model instability (Tyralis et al., 2017).

Numerous studies have demonstrated CNN efficacy
with spatial data, while RNN is commonly applied

to time-series data, though it suffers from vanishing
gradients Sevin et al, 2017). Research by Liu et al.
(2021) and Chandra et al. (2021) underscores LSTM
effectiveness in time-series forecasting. LSTM
accuracy often improves with adjusted epoch sizes;
however, overly large epochs can lead to overfitting.
Per Tensor Flow guidelines, epochs should be
adjusted until accuracy stabilizes. The previous
LSTM model employed 70 epochs with 32 batches.
Fine-tuning this to 90 epochs with the same batch
size yields improved metrics across Tables 4, 5, and
6, achieving R² values of 0.99 for nitrogen, 0.96 for
potassium, and 0.99 for Phosphorus.

This optimized LSTM model with 90 epochs and
32 batches shows markedly better performance for
nitrogen, potassium, and phosphorus predictions
compared to the earlier LSTM model results in
Tables 1, 2, and 3. Consequently, the fine-tuned
LSTM model (illustrated in Figure 4) may be the
preferred choice for forecasting fertilizer needs in
the next cultivation cycle of tomato crops.

Conclusion

The study aimed to determine the optimal soil
moisture level for the best plant growth and fruit
yield.  The data presented in the graph and tables
offer insights into how the different soil moisture
levels affect the various growth parameters such as
plant height leaf number and fruit weight.  The graph
and table collectively indicate that a soil moisture
range of 60-70% is optimal for plant growth.  This
range consistently shows better results in terms of
plant height and leaf number.

Plants in pots with soil moisture levels of 60-70%
exhibit the greatest height, suggesting that this
moisture range is ideal for vertical growth.
Similarly, the number of leaves is high in the same
60-70% soil moisture range, indicating robust
vegetative growth under these conditions.  The total
weight of fruits harvested is highest in pots with
70-80% soil moisture.  Although slightly higher
moisture levels might decrease vegetative growth,

Figure 5. Graph plotting the actual and predicted
values of NPK to be used for the crop.
a. Actual value and predicted value of nitrogen using

the LSTM model.
b. Actual value and predicted value of phosphorus

using the LSTM model.
c. Actual value and predicted value of potassium using

the LSTM 0model.
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they seem to favor fruit production.  Lower soil
moisture levels of 40-50% tend to result in shorter
plants with lower fruit yield.  Conversely, overly
high moisture levels, above 80% are not covered in
the data but might potentially lead to issues such as
root rot.  The results suggest that maintaining soil
moisture within the 60-70% range is generally
beneficial for both vegetative growth and fruit
production.  For maximizing fruit yield specifically,
slightly higher moisture levels of 70-80% may be
more advantageous.  These findings can guide
agricultural practices, ensuring that crops receive
optimal amounts of water for healthy growth and
maximum yield.

The evaluation of data using various machine
learning models to predict nitrogen, potassium, and
phosphorus levels reveals that RF consistently
outperforms other models across all metrics, with
the lowest error rates and highest R² values,
indicating high prediction accuracy. Conversely,
CNN demonstrates higher error metrics, rendering
it less effective for these predictions. The
performances of RNN and LSTM models vary, with
certain LSTM models showing metric-specific
improvements. Previous studies have noted
inaccuracies in RF predictions as the database scales
up. RNN models, while capable of time-series
analysis, encounter the vanishing gradient problem,
limiting their ability to learn patterns over extended
data sequences. In contrast, adjustments to LSTM
models have produced competitive results in
subsequent evaluations, suggesting potential for
refinement. Consequently, the LSTM model
emerges as the most suitable choice for nutrient level
predictions in this study.

The fertilizer schedule predicted here should be
implemented in the next crop cycle. This automation
process for irrigation and fertigation has been
conducted in red soil specifically for tomato crops.
Additional experiments are required to apply this
approach to the same crop in different soil types
and also to other crops across various soils. These
experiments should continue until a substantial

database is built to refine and enhance prediction
accuracy.
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